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ABSTRACT 2 201

The prohlem studied in this thesis is the guidance of interplane-
tary vehicles which are thrusting for a large portion of the transfer.
The vehicle is represented by a seven component state vector consist-
ing of the position, velocity and mass of the spacecraft, The analysis
is linearized by assuming that the actual state of the vehicle differs
only a small amount from a known reference state. The reference
trajectory is assumed to be a propellant-optimal path connecting the
initial and final points.

The goal of the postulated guidance system is to satisfy position
and velocity conditions at the target with minimum propellant expedi-
ture. Both fixed-time-of-arrival and variable-time-of-arrival guid-
ance are discussed. Specification of the guidance criterion in the
above manner permits the techniques of optimal control theory to be
applied to the problem. Emphasis is plazced on finding an analytic
solution of the linearized equations. The desired solution is the con-
trol program which satisfies boundary conditions and minimizes pro-
pellant expenditure.

The method for solving the guidance problem is shown to be suit-
able as a technique for computing optimal reference trajectories. The
trajectories are computed by iterative application of the guidance sol-
ution. Application of the guidance solution to the trajectory problem
is shown to exploit an interpretation of the Euler equations which per-
mits simplification of the computation technique.

The guidance solution is tested in a numerical example by using
it to compute trajectories from Earth's orbit to the Martian orbit for
different low-thrust vehicles.

The guidance solution is based on the assumption that vehicle
state is known at the time a new control program is to be generated.
Prior studies by several investigators detail methods of using celestial
measurements to estimate state. A portion of this report is devoted
to extending the method of celestial measurements to include measure-
ment of engine performance. The additional measurement is shown
to improve the estimate of state.
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A discussion is presented of the difficulties arising from differ-
ences in the criterion for optimality as interpreted from the calculus
of variations and from Pontryagin's maximum principle.
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n component adjoint vector
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The preceding symbols and the mathematical expressions used

throughout the thesis will in general conform to the following rules:

Example

1. A capital letter designates a matrix unless
otherwise noted. A
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10.

. Underscored letters, both upper and lower

case, represent column vectors,

. Superscript T represents the transpose

of a matrix or vector

. Superscript -1 represents the inverse

of a matrix

. Unless underscored, lower case letters

represent scalar quantities

. Juxtaposition of matrix and vector sym-

bols represents matrix multiplication

. The>determinate of a matrix and the

magnitude of a vector (when lower case
letters are ambiguious) will be indicated
by vertical bars.

. Vertical brackets indicate a column

vector composed of the enclosed
quantities.

. Square brackets indicate a matrix

whose elements are the quantities
enclosed

Diamond brackets indicate the time
average of the enclosed quantities.

A~
< I3

5]

<€ € >

The conventional dot notation is employed to indicate the time

derivative of a quantity with respect to a non-rotating reference frame.

Subscripts are used to supplement the fundamental notation.

Subscripted variables are defined as they are introduced.
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CHAPTER I

INTRODUCTION

Early in the investigation of rocket propulsion for extra-terrestrial
travel, it became apparent that conventional chemical propellants were
1,2,3,4 . .

. This fact is

due to the relatively low energy content per unit mass (specific energy)

inadequate for many interesting space missions

of chemical fuels. The theoretical mass ratios required for many inter-
esting missions in the solar system approach numbers of the order of

103 and higher when chemical fuels are used".

The need for more efficient means of propulsion has led to the
investigation of energy sources other than chemical reactions. Such
studies have produced an entire spectrum of propulsive techniquess,
each having particular mission capabilities and each having its own
theoretical and practical difficulties. In general, the use of higher
specific energies is accompanied by a decrease in propellant flow rate
and longer propulsion time for a given mass ratio. In limiting cases
the propulsion time equals the transfer time. In addition, a longer pro-
pulsion time permits reduction of thrust levels for a given total impulse.
The terms ''continuous thrust" and "low thrust'' stem from these two
effects of high specific energy. Although the terms are not synonymous,
they are often used interchangeably in the literature since they apply to
the same types of vehicles. In the subsequent discussion, ''continuous
thrust" is used to describe vehicles which thrust for a major portion of
the transfer and ''low thrust' refers to vehicles which have acceleration

levels less than about 10_3g00

[ This study is concerned primarily with those propulsion methods

which rely upon a separate energy source* for the generation of pro-

pulsion energy. With few exceptions, these are low thrust devices.

*Underlined words are defined in footnotes.

separate energy source: propulsion system characterized by a power
plant which is independent of the thrust-producing mechanism.




Where it is necessary to be more specific, anon-board nuclear reactor

is assumed.

We shall not be concerned with further justifying the use of these
devices, nor with defining their regions of usefulness. Such questions

are well covered in the 1iterature2’3’4’6

.LThe goal here is to assume
that such vehicles will exist and to study the problem of guidance ir-

respective of the mission or of the particular propulsion method usecﬂ

1.1 The Guidance Problem

The presence of a thrust acceleration, acting over a significant
portion of the spacecraft trajectory, introduces complexities in the
analysis of spacecraft motion which make many of the techniques in
common use for ballistic vehicles inapplicable. In particular, the ele-
gant conic representations can be used only when the thrust may be
treated as a small disturbing force. In general this is the case only in
the region near a central body. Consequently it is desirable to formu-
late continuous-thrust investigations within a body of mathematics hav-
ing sufficient applicability to treat most problems of interest. The
calculus of variations and the concepts of optimal control theory meet

this need.

In the terminology of this branch of applied mathematics, guidance
of continuous-thrust spacecraft is the problem of finding a control pro-
gram which transfers the spacecraft between two given points in space
subject to constraints on the velocity at both terminal points. Since
such programs are not unique, it is possible to place additional con-
straints on the solution such that some desired quantity (the cost func-
tion) is maximized or minimized. Thus, in addition to satisfying fixed
boundary conditions at both launch and target points, solutions may be

found which minimize transfer time, or propellant consumed or some

guidance: as used in this thesis, the term refers to the process of
determining a control program.

control: as used in this thesis, the term refers to the quantity or quan-
tities (thrust or acceleration) representing the propulsive effort. It
also refers to the mechanical process of directing the propulsive effort
in accordance with the control program.




other quantity appropriate to the mission. This thesis is concerned
with maximizing only the final mass. At the present time no method
has been found which will prove rigorously that the solutions obtained
in inverse square (and more general) gravitational fields satisfy the
condition for an absolute maximum of the final mass7= One can only
show that the solutions produce a maximum in the region of space under
consideration, i.e. local maxima, and then demonstrate from physical

reasoning that other solutions are not likely.

From the viewpoint of guidance, initial conditions for the two-point

boundary value problem are represented by the present state of the

vehicle. If a vehicle can be flown 1n accordance with the solution that
exists at the instant of launch, only cne solution is needed. Such a case
is a problem in control, not in guidance. That is, the desired thrust
program is known (guidance) and the magnitude and direction of thrust
must be controlled so that the spacecraft follows the desired trajectory
(control). Even with ""tight" control locps, however, perturbations in-
evitably occur which cause the spacecraft to depart from the original
optimized trajectory. When this happens a new control program must

be found which will cause transfer from the present state to the final
state such that final mass is maximized. This is the problem we desire
to solve. It follows, that if a sclution can be found for the guidance prob-
lem, then by considering the launch state as the present state, the op-
timized trajectory connectingthe launch point and target point may be

T

determined. his latter application of the guidance techniques leads to

that part of the thesis described as "trajectory computation. "

In the preceding paragraph it was emphasized that the present state
of the vehicle serves as the initial condition for the boundary value prob-
lem. It is necessary, therefore that some method exist for determining

the state of the vehicle at any time. In this thesis the unique features

state: refers to the seven quantities which describe the vehicle in terms
of physical variables.

present state: refers to the vehicle state as determined by the space
navigator, i.e. the state at the present instant of time. In this thesis
navigation refers to the process of determining state from measure-
ments.




of a continuous-thrust vehicle are examined from the viewpoint of

estimating vehicle state.

Finally, the concept of constant exhaust power is examined as a
criterion for low-thrust transfers. It is easily shown that if a linear

system is power-limited, as in the case of separately powered rockets,

the minimum expenditure of energy results from operation at maximum

continuous power7. The application of this principle has been used ex-

8,9,10

tensively throughout the literature An analogous treatment of

thrust-limited rockets is examined here.

1. 2 Prior Studies

Published works on guidance of interplanetary low-thrust vehicles
were almost nonexistent prior to early 1963. Miller‘11 produced a
guidance technique for cis-lunar space in his doctoral research in 1961.
This technique consists of spiralling out from the Earth to some point
from which the vehicle may coast to the vicinity of the moon, then
matching the unique velocity vector, corresponding to the present posi-
tion of the vehicle, which will result in achieving the target point.
Miller showed that guidance of this type results in a relatively small

fuel penalty for lunar missions.

Fr‘iedlamder'10 formulated the problem in the classical calculus of
variations and solved the adjoint equations in two dimensions for the
sensitivity coefficients of the state variables along an optimized tra-
jectory to Mars. In reference 12, he suggests a linearized solution
which minimizes a quadratic function of the control variable variation.
The solution approaches but does not attain the control program for
maximum final mass. In reference 13 Friedlander applies his tech-

niques to a vehicle using a Snap-8 power source.

The most recent work is that of Pfeiffer‘14 who applies some of the
newer developments in the theory of optimal control to the low-thrust

guidance problem. Pfeiffer solves the guidance problem and minimizes

power limited: refers to a propulsion system characterized primarily
by a maximum power level.

thrust limited: refers to a propulsion system characterized primarily
by a maximum thrust level.




a penalty function which is "equivalent' to a quadratic form of the final
state error. The control program produced by this method satisfies
the boundary conditions '‘as closely as possible using the penalty func-
tion. " (the quotation marks are from the reference) Pfeiffer's method,
however, is not applicable to problems where certain boundary values

are fixed.

Much of the recent work in optimal control theory concerns sys-
tems which have mathematical models similar to those for low-thrust
vehicles. Many of the ideas developed in these investigations are
directly applicable to the problem considered here. Significant con-
tributions are attributable to Pontryagin15, Kalman16 and Br'eakwelll'7
who have formulated existence theorems and derived necessary and
sufficient conditions for optimal trajectories. Breakwell has also
contributed important work in specifying the form of solutions with
constrained control vectors. Athans, Falb and LaCross18 working
together and individually have solved many special cases of optimal

trajectories for constrained control vectors.

[Fundamemal tc any guidance study is a qualitative knowledge of the
trajectory along which the space vehicle is to travel./ Quite properly
then, the earliest work in low-thrust propulsion consisted of studies of
engine characteristics and trajectory characteristics. Several of the
earlier studies of engine characteristics have been previously refer-
enced. To those must be added the contributions of Langmuir19 and

.20
Irving

In the area of trajectory studies Tsier121 performed some of the
earliest work (1953). This was followed several years later with con-
tributions by Lawdenzz‘, Moecke123, Melbourne24and Zimmerman,
McKay and Rossa25,, The problem which confronted these authors was
that analytic solutions to the trajectory problem can be found only for
linear gravitational fields. For central force fields and more complex
configurations, solving the two-point boundary value problem was a
tedious trial-and-error procedure requiring the use of high speed digit-
al computation. Satisfying an additional constraint for an optimized

trajectory was tedious and time consuming even with high speed




computers. The work of Bryson26 and others in the late 1950's and
early 1960's served to simplify the machine procedures so that com-
putation of optimal trajectories became less tedious and less time

consuming.

1. 3 Thesis Philosophy and the Method of Approach

Throughout the research and writing of this thesis the author has
attempted to consider the low-thrust guidance problem from the view-
point of a space navigator who is responsible for the safe and timely
arrival of the spacecraft at the target point. The extrapolation of air-
craft navigation experience into space navigation is, at best, a hazard-
ous undertaking; however, it does provide a basis for certain decisions
which have influenced the author's approach to this investigation. The
following criteria were established from this philosophy and have been

used when it became necessary to make definite assumptions.

1) The mission is manned, probably utilizing more than one

vehicle, each of which is manned by several crewmen.

2) The mission duration is limited by consideration of human

tolerances.

3) The spacecraft configuration and the mission have been speci-
fied. Hopefully, the spacecraft characteristics are optimum

for the mission, but may not be.

4) Whatever the mission, at each of several points along the tra-

jectory the navigator has three choices:

a) to rendezvous with the target point at the preplanned time
such that the trajectory minimizes propellant consumed.

b) to rendezvous with the target point utilizing a time and
trajectory such that propellant consumption is minimized.

c) to rendezvous with the target point in minimum time utiliz-
ing the available propellant. This alternative is not

treated in the thesis.

These guidelines establish the general context within which the guidance
problem is to be solved. Let us now proceed to examine the specific

items which complicate the solution.




1) The mathematical theory concerning optimal trajectories dic-
tates that the first variation of the optimized quantity must
vanish for the optimal path when the control is unconstrain-
ed27’28’29

state variable, the matrix of coefficients relating the contirol

As a consequence, if the optimized quantity is a

variables to the state variables is singular and its time inte-
12,14 ’i‘he

singularity is proven in Appendix C. Solutions for the optimal

gral along the optimal trajectory is also singular

control usually require inversion of this matrix. The prob-
lem of singular matrices is handled in this study by a method
of deleting certain matrix elements which create the singular-
ity and by the formaticn of a new matrix which can be inverted.
The deletion method 1s an important part of the thesis and
provides a general method for treating certain singularities

without reformulating the problem.

2) Optimal trajectories for constrained control variables often
possess discontinuities in the first derivatives of one or more
state variables and in the control variables. This mathemati-
cal problem is handled by the use of switching functions which

are continucus.

3) Optimal trajectories for constrained control variables require
periods of maximum control magnitude. Therefore, if the
maximum propulsive effort is required for the optimum tra-
jectory, guidance around the optimum is limited to changes in
thrust direction unless reserve propulsive power is available
for guidance. The assumption that reserve power is available

is used for this study.

It was stated in section 1.1 that the low-thrust guidance problem

may be treated as a two-point boundary value problem in the calculus

27,28,29

of variations Thus techniques of the calculus of variations

constitute a primary mathematical tool. One of these techniques is the
method of adjoints, which plays a fundamental part in subsequent chap-
ters. The author has borrowed heavily from newer theories in optimal

17,18

control since the state space formulations widely used in the




literature of that field are applicable to low-thrust guidance. One of
the more useful tools in optimal ccntrol theory is associated with

Pontryaginl5 although other authors have used the same principle16

A derivation of Pontryagin's maximum principle is outlined in

Appendix D for convenience of the reader.

To facilitate notation and to preclude the possibility of fundamental
notions becoming obscured by the quantity of algebraic detail, matrix
notation and the ideas of matrix calculus are used throughout. Finally,

to test the thesis, numerical analysis and an IBM 7094 were employed.

1.4 Relationship to Prior Studies

In the research preceding this study, the author began with the
formulations of Friedlander'10 and Melbourne8’24, and attempted to
extend their ideas into areas of more general application and to find
solutions to the guidance problem which were useful from the space
navigator's viewpoint. One of the fundamental considerations was tc
find control laws which optimize propellant consumption. Cost func-

tions which produce near-optimal propellant consumption were rejected.

The idealized formulations for the separately powered rocket re-
quire a wide range of thrust and of specific impulse as the vehicle
traverses its trajectory. Current technology indicates that variable-
specific-impulse thrusters will not be available in the forseeable

future, at least for electrostatic vehicles. To satisfy this engineering

restriction, investigators have continued to use the power-limited for-
mulations but approximate the optimal thrust magnitude programs with
regions of constant specific impulse where relatively low values of
specific impulse are required and with coast elsewhere. It is shown
in this thesis that the so-called ''bang-bang'' control used to satisfy the
engineering restriction can be derived by abandoning the concept of
power-limited thrusting.

In section 1.1 the necessity of estimating the state is discussed.

30 31

The works of Battin™ ~, Stern”~, and Potter and Stern32 serve as the

electrostatic (propulsion) : A propulsion method depending upon the
acceleration of charged particles through an electrostatic field.




starting point for extending, to the low-thrust case, the navigation tech-

niques (estimate of state) which have been developed for ballistic vehicles.

Finally, using the guidance solutions an iterative technique for com-
puting low-thrust trajectories is developed. Recent investigations in the
field of trajectory computation appear to rely heavily on steepest ascent
techniques. These techniques require rather complex programs, care-
ful handling and suffer from the problem of slow convergence as the
optimal trajectory is approached. The technique suggested in this

study appears to be faster even for discontinuous control variables.

1.5 Summary of Thesis Objectives

In closing this introductory chapter it seems appropriate to provide
a sketch of the objectives of subsequent discussions. Briefly, the ob-
jectives of this thesis are: 1) to present a linear, noniterative method
for deriving a control program for guidance of low-thrust space vehicles

with respect to a propellant-optimal reference; 2) to show that the com-

puted control programs satisfy the necessary conditions for an optimum:
3) to show that the method may be extended to trajectory computation by
successive iteration of the guidance solution; 4) to examine a method of
estimating the state of continuous-thrust vehicles and 5) to examine the
concepts of power-limited and thrust-limited vehicles from the view-

point of guidance.

The fundamental argument of the thesis may be extracted from
these several objectives. It is: ''There exists a linear method which
produces a propellant-optimal control program in a noniterative form
for guidance of power-limited and thrust-limited space vehicles, and
which provides a simple, rapidly converging iterative technique for com-

puting propellant-optimal trajectories;’”"

propellant-optimal: refers to a trajectory which results in minimum
propellant usage.




CHAPTER 11

THE LOW-THRUST SPACE VEHICLE

2.1 Summary of Chapter 1I

In this chapter the parameters which characterize low-thrust vehicle
performance are derived and discussed. The constant-exhaust-power
concept, which has been widely used in the past, is shown to be the op-
timum method of engine control. The propellant cost accruing from
engineering restrictions on variable specific impulse is computed for
field-free space by analytic methods. Both methods of engine control,
the ideal and the practical, are discussed from the viewpoint of guidance.
Finally, the results of a numerical study, which confirm the derivations,

are presented.

2.2 The Use of a Separate Energy Source

One may verify from momentum considerations that the instantane-

ous force exerted on a space vehicle by 1ts exhaust stream is:
f=mc (2-1)

where f is the force vector, c is the oppositely directed exhaust velccity

and m is the mass rate of the vehicle. (-m is the propellant flow rate.)

Since, the force magnitude may be held constant if m and c are
varied inversely, the selection of a high exhaust velocity and low pro-
pellant flow tends to reduce the total amount of propellant required for
a given impulse. Unfortunately, processes which use the products of
combustion as the propellant are unable to produce, simultaneously, the
low flow rates and high exhaust velocities required for many interesting
missions. If we use specific impulse, Isp’ as a measure of the engine

performance, where

= = (2-2)
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and g, is the acceleration due to gravity at the Earth's surface, then
chemical systems are limited to values of specific impulse under 600
seconds and direct nuclear systems to values of about 1600 secondsSO
However, if a separate energy source is available, the source energy
may be converted into electrical energy and used to accelerate charged
propellant particles. Values of specific impulse in the range of 3000

to 20,000 seconds appear attainable in this WayG«,

Several energy sources and conversion processes are under inves-
tigation. These may be divided into the two broad categories of direct
or indirect energy conversion. Direct methods may be characterized
by the absence of a mechanical phase in the conversion process. Power
from solar cells is cne example cf this type. Direct production of elec-
trical energy in a nuclear reactor is another. A prcposal for this latter
method is discussed in reference 33, however it has not been proven in

the laboratory.

Indirect conversicn of the scurce energy into electrical energy
appears, at the present time, to be more realistic for large manned
spacecraft which have power requirements in the range of several
megawatts. The process generally considered most promising uses a
nuclear source to power turbomachinery for the production of electrical

energy. A block diagram of this type system is presented in Figure 2-a.

In this report, an on-board energy source is explicitly assumed
although much of the guidance analysis is independent of such considera-
tions. This assumption permits the power availability to be independent
of the trajectory. This is nct the case, for example, when sclar energy
collectors are used since for a given collector area the power availa-

bility varies inversely with the square of the distance to the sun.

2.3 The Constant-Power Concept

Separate energy sources are most often described as power-limited
devices. That is, their rate of energy conversicn is the design criterion.
If the energy produced by the scurce is all converted to propulsive en-

ergy then the power in the exhaust stream is given by

11
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Fig. 2-a. Schematic diagram of separately powered rocket.

-m c*
p=—- (2-3)
2
(The efficiency of the conversion process will be introduced in a sub-

sequent discussion. )

It is well known that for a large class of problems in linear fields,
minimum total energy expenditure results from operation at maximum
continuous power. This result may be obtained for conservative fields
in general by use of variational techniques as shown in reference 7. The
usual assumption in low-thrust investigations, that exhaust power is a
constant and equal to its maximum value, is therefore, quite valid in the
idealized problem. This result is used to establish parameters for the

separately powered rocket.

12




Combining equation (2-3) with the relations

f=-mc (2-4)
f=ma (2-5)
one obtains
-m 2
= a__ (2-6)
2
m 2p

where a is the thrust acceleration of the vehicle. Integration of equa-
tion (2-6) over the flight path yields

iy
LN S N T (2-7)
me m 2p O

where the subscripts indicate initial and final times. Equation (2-7) is

more conveniently expressed in terms of the mass ratio.
t
m f
MR -1 = -2 [ a%at (2-8)
2p O

Three parameters will now be defined

Ly
1 2
J=5 [ a%at (2-9)
0
m
a = B (2-10)
p
m
Bo= (2-11)
m
(6]

J is the well known acceleration integral; a is the specific mass of the
propulsion system and must include the total efficiency of energy con-
version when p is the desired exhaust power; B is the propulsive system
mass fraction and mp is the propulsive system mass. Substituting
these parameters into equation (2-8) one obtains

MR = 1+2J (2-12)
8
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ACCELERATION MAGNITUDE (x104g,)

For a spacecraft with fixed parameters and a specified mission,

the minimum mass ratio and thus the minimum propellant usage is

achieved for trajectories which make J a minimum.

The objective of trajectory computation and of guidance is to find

a path which accomplishes the mission and minimizes J.

2.4 Limitation of the Constant-Power Concept

Using the equations of section 2. 3, the thrust acceleration may be

expressed as

(2-13)

Figure 2-b shows a plot of the thrust acceleration magnitude during a

fast transfer to Mars for which J is a minimum. The absolute value

N
(6]

g
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|
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Fig. 2-b. Optimum acceleration level for variable-specific-impulse Earth-Mars transfer.
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of acceleration has a variation over two orders of magnitude. From
equation (2-13) it is apparent that the exhaust velocity, (i. e., the specif-
ic impulse) must have a similar range of values since m is monotoni-
cally decreasing. However, the current thinking of investigators who
are studying propulsive devices indicates that in a given thrust pro-
ducer, only a very small range of exhaust velocity variation will be
feasible unless major advances in technology are forthcoming. The
thrust producer can be designed for one particular exhaust velocity.
Operation at other than the design point tends to decrease efficiency

and shorten, markedly, the useful life of the device.

This restriction on exhaust velocity is treated in the 1iter=atur-e19
as a departure from the ideal conditions of constant exhaust power.
The author treats this restriction from a slightly different viewpoint.
In the succeeding section parametric equations for a constant-specific-
impulse rocket will be derived which are analogous to equations (2-8)
through (2-12). With these parametric equations one may compare
directly the performance of a rocket with specified maximum power,
under the two modes of propulsive control, i. e. constant-specific-im-

pulse (CSI) or variable-specific-impulse (VSI).

2.5 The Constant-Specific-Impulse Concept

The propellant-optimal thrust program for a CSI rocket is shown
subsequently to have two magnitudes, maximum thrust or zero thrust.
In order to allow for maneuvering and for departures from the refer-
ence trajectory, reserve thrust capability is required. (For VSI rock-
ets this problem does not occur since thrust is continuously variable. )
A method for controlling thrust magnitude which appears quite attrac-
tive and is compatable with thruster design is to build up the propulsion
unit from a large number of small thruster nozzles of constant specific
impulse. Proposals of this type appear in the literature but are not
analyzed in de'cai135~ Control of thrust magnitude is obtained by con-

trolling the number of thrusters in operation.

If a nuclear energy source is used the power range is not continu-
ously variable from zero to maximum power and may be limited in the

number of times that stopping and starting is permitted. However, the
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energy source and the thruster units can be operated at their respective
optimums by placing an external high temperature resistor in the sys-
tem which will radiate energy in excess of that required by the thrus*ers.

Since the nuclear fuel constitutes only a very small fraction of vehicle

weight, this procedure has negligible effect on the final mass of the

vehicle. Figure 2-a shows the propulsive system schematic diagram.

For a propulsion unit constructed in this manner, the total thrust

of the vehicle is some fraction of the total thrust available. That is

f = -nm ¢ (2-14) |
. |
f = -m c (2-14a)
o o
m = nr'no (2-14b)
nfo -nm _c
a = = 9 (2-15)
m m
. 2
—nmoc
p=np = — (2-16)
© 2

where n is the fraction of thrusters in use and fo’ —fno and p, are the
maximum values of thrust, propellant flow rate and exhaust power,

respectively.

By eliminating the exhaust velocity, equations (2-14)through (2-16)

may be manipulated into the form

°© - _ 09 (2-17)
m 2pom

Integrating and expressing the result in terms of the mass ratio, one

obtains

a dt (2-18)

Observe that the factor fo/m is the maximum acceleration possible
for a given mass. Therefore the acceleration integral for a thrust-

limited vehicle is proportional to the integral over the thrusting time of




the product of the maximum instantaneous acceleration and the instan-
taneous acceleration. Designate this integral J* and observe that for
a vehicle of specified power and initial mass, the mass ratio is a min-

imum when J* is a minimum.

iy
1
3% = - -
J : Of a_ . adt (2-19)
a e
MR -1= 2 J* (2-20)
g

Equations (2-19) and (2-20) correspond - to equations (2-9) and
(2-12) respectively, and permit a direct comparison of the performance
of a hypothetical vehicle with given power and given initial mass when

controlled as a VSI vehicle and then as a CSI vehicle.

The comparison is made by finding an optimal trajectory for a
specified mission for each type of control and then comparing the mass
ratios or the acceleration integrals for the two cases. This has been
done for a simulated mission to Mars using techniques described in

later chapters, and for the simple case of a transfer in field-free space.

2.6 Comparison of CSI and VSI Control

From a qualitative point of view, finding an optimal trajectory for
the VSI machine consists of finding that trajectory which minimizes
propellant expenditure for a given constant exhaust power but with un-
constrained exhaust velocity. In the case of the CSI vehicle, the prob-
lem is that of finding the trajectory which minimizes the propellant
expenditure subject to a given maximum exhaust power and a given

constant exhaust velocity.

If both vehicles have the same maximum exhaust power and both
control programs optimize propellant consumption then constant-specific-
impulse is but a. limiting case of variable-specific-impulse and
cannot result in less propellant usage. Therefore the acceleration
integral for a VSI transfer can be used as a reference for assessing

the additional propellant cost of CSI transfers.
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In order to compare the two vehicles for a transfer in the gravita-
tional field it is necessary to use machine computation. However,they
may be compared analytically in field-free space. The results are
shown to provide reasonable approximations for the values obtained in

the gravitational field.

Assume that in field-free space it is desired to traverse the dis-
tance L in the time T such that the rocket begins and ends at rest. This
problem is solved in the literature for VSI spacecraft34. The solution
is rederived in Appendix A and the solution for the CSI spacecraft is
also derived.

The results for variable-specific-impulse thrusting are:

2
L -
T
6L )
a, =~ (2-22)

T

where a is the initial acceleration. The optimum acceleration pro-
gram starts at a, and decreases linearly with time such that a(T) = - a_.

(See Figure 2-c)

6L

a. = —

o TZ
Z J= 6L°
o© R )
-
<
5
d o T/2 T
u TIME
(&
g

Fig. 2-c. Optimum acceleration for constant power rocket in field-free space.
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For a normalized mass (i.e. m is unity), equation (2-12) may be

written in this case as:

2
MR = 2L 41 (2-23)
pT
Define the parameter R.
R =3 (2-24)
p
MR = % F1 (2-25)
Therefore in this cése
2
R = 8L (2-26)
pT

Equation (2-25) is plotted in Figure 2-d. R is an excellent measure
of the difficulty of a mission in field-free space. For example: A
large transfer distance, a short transfer time and a small energy
source would produce a large value of R. Such conditions indeed repre-

sent a difficult transfer.

It should be noted_ that the mass ratfio is linear in R. Thus VSI

transfers characterized by a finite R require finite mass ratios.

For a constant-specific-impulse vehicle of identical power to per-
form this mission requires a specification of exhaust velocity or, more
conveniently, initial acceleration. In Figure 2-d, the mass ratio is
plotted as a function of R for two values of initial acceleration. The

first corresponds to a, = % and is asymptotic to R = 20. The second,
T

which corresponds to an optimum value of initial acceleration for CSI

machines is exponential in R.

The optimum initial acceleration for CSI vehicles is

el

a

(In MR) a (2-27)
°(

(e}
opt) gy (opt) ys1

For small values of R such that the mass ratio is near unity, equation

(2-27) may be simplified to
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a -3 3 (2-28)
°(opt) 4 (opt)
CSI OPt)ys1

The transcendental equations for this example are derived and solved

in Appendix A.

The conclusions that may be drawn from the field-free space

example are:

1) Control of thrust by varying specific impulse but with con-
stant exhaust power is the propellant-optimal method of con-

trol,

2) For missions represented by small values of the parameter
R, (less than 5) the propellant penalty for using an optimized

constant specific impulse is less than 15%.

3) For large values of R the propellant cost of constant-specific-

impulse is very large, even for an optimized CSI.

4) For sufficiently long transfer times the value of R may be
decreased so that the propellant penalty of constant-specific-
impulse is very small. (As will be subsequently shown, an
optimized one way trip to Mars corresponds to an R of approx-

imately 1).

It is not readily apparent that the results derived for field-free
space are directly applicable to transfers in the gravitational fields of
the solar system. However, Melbourne and Sauelr‘34 have computed
the VSI acceleration requirements for a number of interplanetary trans-
fers and found the values to be in surprisingly good agreement with the
field-free space analysis. Therefore, it seems valid to argue on the
basis of field-free space when comparing CSI and VSI systems. The

numerical results in this study support this conclusion.

The parameter R, which includes the effects of both mission re-
quirements and spacecraft power, was found to be more useful in the
comparison of CSI and VSI systems than the acceleration integral alone.
Some significant facts which are evident when R is used as a parameter

but which are missed when the acceleration integral alone is used are:
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1) increasing the spacecraft power for a particular mission

reduces the propellant penalty of CSI operation,

2) the optimum initial acceleration, and thus the optimum ex-
haust velocity for CSI vehicles may be determined to reason-
able accuracy from analysis of the VSI spacecraft using equa-
tion (2-27).

2.7 Maximizing the Payload

In section 2. 6, the problem of maximizing the mass ratio is con-
sidered. In this section the energy source which maximizes the pay-

load for a given mission and mode of operation is computed.

Both CSI and VSI vehicles are characterized by the general equa-

tion:
MR= 2 J+1 (2-29)
B
a My
where the term 5 J may be written alternatively as —— J.
p

If the initial mass of the vehicle is considered to consist of only
three parts: payload, propellant and power source, then the mass dis-
tribution may be written as

m

el Rt (2-30)
m MR
o
m
L. 1 B (2-31)
m MR
o
ML
where —— is the payload fraction.
m
o

Substituting equation (2-29) into equation (2-31), an expression for

payload fraction is obtained in terms of a, B, and J.

B(-——l——— - 1) (2-32)
aJ +B

]

B'B
t
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Differentiating equation (2-32) with respect to f and setting the deriva-
tive equal to zero results in the optimal mass distribution for either

CSI or VSI space vehicles. The result is:

m
_L =(1- yYan? (2-33)
m
7 opt
= J 1/2 J 2-34
Bopy = (@1 % - a (2-34)
m 12
<_P) = (aJ) (2-35)
m
© opt
m
where —£- is the propellant fraction.
m
0

From the alternative forms of equation (2-29) and equation (2-34)
the optimum exhaust power for a space mission is obtained.

1,
Bopt = & = (.:T..) /2 - J (2_36)
a mo a

For the numerical work in this thesis an optimistic, but not un-
reasonable, value of a was selected. In all subsequent computations,
an a of 10 kilograms per kilowatt is assumed. From the digital com-
puter studies of a 150 day Earth-Mars one way transfer, a value of J
was obtained for the sizing relationships. This value of J was multi-
plied by the factor 4 and rounded off to provide a more realistic value
for a round trip to Mars. The use of an approximation is justified in
that the purpose here is to provide a reasonable value of power for com-
paring VSI and CSI operations without placing undue emphasis on opti-
mizing the round trip mass distribution. That is, the author is more
concerned with optimal guidance of a space vehicle of given power and
mode of operation than in determining whether the spacecraft is the
best vehicle for the mission. Further, the preceding method of maxi-
mizing payload, although widely used in low-thrust-studies, does not
adequately treat a round trip mission comprised of several phases such

as escape from Earth, transfer, capture at the target, a waiting period,
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and similar return phases. Each of the phases may impose particular
requirements which are not compatible with the other phases. For
example, it may be impractical to use 100 or more days to effect a
spiral escape even though the optimized solution requires it. Conse-
quently the derivation in this section must be considered as only an
approximate method of maximizing payload for realistic round trip

mission planning.

The value of J selected was 10-6. The units are (astronomical
units)2 per (day)s. Inserting these values of a and J (in compatable
units) into the equation (2-36), a-value for po/mo was computed for use

in the numerical work.

0. 0242 kw/kg
m (2-37)

3

|

0.6988 X 1070 (A. u. )2/ (day)

Using the value obtained in equation (2-37), values of MR were
extracted from computer results and compared with the field-free
space values for both CSI and VSI engine control. The results of this
comparison are plotted on the curves of Figure 2-d. Agreement is
good for the cases tested and warrants further investigation for dif-

ferent values of the parameter R.

Values of initial acceleration and specific impulse which are char-

acteristic of the values obtained in the numerical studies are

1.2x 1074

a /g, (2-38)

I 4000 seconds (2-39)
sp
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CHAPTER III

LINEAR GUIDANCE

3.1 Summary of Chapter III

The guidance problem for continuous-thrust vehicles is formulated
in this chapter using perturbation techniques and the theory of optimum
control. A reference trajectory which satisfies mission requirements
is assumed to exist and its associated control program is known. The
consequences of allowing the reference trajectory to be an optimal tra-
jectory are examined. Linearized equations of state are solved to-

gether with their adjoint set to produce a state transition equation

applicable for small perturbations around the reference trajectory.

The state transition equation is then shown to be suitable as a guidance
equation. Solutions for the guidance equation are derived for fixed-
time-of-arrival (FTA) guidance. Variable-time-of-arrival (VTA) guid-

ance is solved for certain restricted cases.

3.2 General Remarks

In terms of the discussion in Chapter II, the ensuing derivation of
linear guidance may be characterized as a method of minimizing the
acceleration integral, J, between the present position and the target
position. For this purpose it is convenient to abandon temporarily the
engineering aspects of low-thrust transfers and to consider the prob-
lem in terms of the calculus of variations and the theory of optimum

control,

The guidance schemes suggested for interplanetary vehicles fol-

lowing ballistic trajectories usually require that midcourse corrections

state transition equation: An equation which expresses the state of the
vehicle at any given time in terms of 1) the state at any other time and
2) the control existing between the two times.

guidance equation: An equation, possessing a solution which satisfies
the mission requirements for the spacecraft. The solution of a guid-
ance equation is oftentermed the '"control law'' or 'control program"
for the physical guidance system.
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minimize, subject to one or more constraints, the position and veloc-

ity wvariations at the destination point.

The characteristics of a continuous-thrust vehicle permit a guid-
ance scheme which will null the position and velocity variations at the
destination, provided guidance is begun sufficiently early in the trans-
fer. For all practical vehicles, if guidance is not initiated early in the
transfer the low-thrust vehicle will arrive at some point, beyond which
insufficient power is available to complete the mission. The vehicle
is then said to be 'in extremis'. This boundary may be visualized as
a conical surface surrounding the reference trajectory with its apex
at the target point. The ''distance' in phase space from the trajectory
to the surface depends upon the excess power allowed for guidance.
The problem of determining the optimum power and propellant allow-
ance for guidance is not studied in this report; however, the techniques
of this caapter are readily applicable to such-investigations and are
recommended as a tool for future work. In tilis chapter it is assumed
that the reserve power is adequate for satisfying the solution to the

guidance equation.

3.3 Formulation of the Problem

The basis for the subsequent analysis is that a vehicle is in transit
betwe~n two planets. The control program in use corresponds to some
known reference trajectory. Measurement of vehicle state indicates

that the vehicle is off the reference trajectory by some small amount.

The first problem of interest asks the question: ''What is the
effect of the state variation at the time of the measurement on the ve-
hicle state at any future time?'' The next obvious question is: ""What
is the new control program which will cause the vehicle to satisfy
mission requirements?'' The third is: '"'If there is more than one con-
trol program available, what criterion should be used for selecting one
of them? "

The third question may be disposed of immediately. The thesis
is concerned with propellant-optimal guidance. Therefore the choice
between controls is on the basis of minimum propellant consumption.

From Chapter II, a criterion which satisfies this objective is the
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acceleration integral. There may be other criteria which are equally
as good, however J was chosen because it is easy to manipulate and is

easily interpreted in the physical problem.

The second question requires that the mission be defined. For
this purpose it is sufficient to require that the final position and veloc-

ity of the vehicle have certain well defined values.

Depending upon the particular mission, the above guidance object-
ives may be satisfied at the preplanned arrival time (FTA guidance)
or at some time different from the planned time but consistent with the
mission (VTA guidance). The FTA problem is readily solved by the
linear methods of this chapter. The VTA propellant-optimal problem
is considerably more difficult. A method of obtaining restricted solu-

tions by linear methods is presented and discussed.

3.4 Selection of State Variables

The differential equations of motion for celestial bodies admit six
constants of integration. The selection of the six quantities to repre-
sent this motion is to some extent arbitrary. To be consistent with
the definition of mission requirements in this investigation, and be-
cause they are convenient, the three components of position and the
three components of velocity are chosen. The convenience is due to
their facility for visualization and their relative facility for physical

measurement,

Since the conservation of propellant is important, an additional
differential equation describing the mass change due to propellant flow
must be included for certain cases. Thus seven independent, but
coupled, variables are sufficient to describe the state of the vehicle
at any time. The state will be subsequently written as a vector which

has components of position, velocity and mass.

|< |3

s - (3-1)

m

The second order differential equations of motion will be rewritten as

first order equations to conform to the above definition of state.
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For this thesis, only central force fields are considered. It is
subsequently shown that extension to more general gravitational fields
does not invalidate the theory but does introduce computational com-
plexities which serve only to obscure the physical concept if introduced

prematurely.

With this introduction the differential equations of state are now

presented. A nonrotating frame with its origin at the central body is

assumed.
s=g(s 2 (3-2)
where - ~
v
g=sLyrvap (3-3)
r
& (M.2)

and where a is the thrust acceleration, subsequently called the control
vector, u is the gravitation constant for the central body, and gm(m,a)
is the mass rate equation for the particular vehicle under considera-

tion. From Chapter II

2 2

g (m,a) = - == (VsI) (3-4)
2p

g, (m,a) = - 22— (CSI) (3-5)
C

Throughout the report the variable m is a normalized mass, that is
m, = 1. This obviates the necessity of selecting a value for total ve-
hicle mass. The power and the propellant flow are likewise normalized

variables. That is

_ Exhaust power (3-6)
initial mass

5 = prop.el_la'mt flow rate (3-7)
initial mass
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3.5 Linearization of the Equation of State

The assumptions of a known reference trajectory, known control
program and of small deviations from the reference trajectory permit
the application of linear perturbation theory. Thus

. % og
6s = — O6s+— ba (3-8)
0s da

From equation (3-8) the matrices A and B are defined.

o, I, O
og
A=— = -G 03 O (3-9)
ds 9
S QT 9T g0
L om
o)
3
og
B=— = |l (3-10)
da
%a
where 5
G=-2 (-‘% 5) (3-11)
8£ r
G=4_ (?1-3rcT) (3-12)
N rr
agm _ azm
B L. (VSI) (3-13)
om p
og
2 -2 (cs) (3-14)
om c
og 2_.T
m _._m2 (ysy (3-15)
da p
T
8 m 2
=- 2 = (csI (3- 15a)
da c a
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The matrix G is a symmetric matrix of gravitational gradients. The
extension to a general gravitational field does not change this property31
However, numerical integration in such a field requires an ephemeris
for the disturbing bodies. This is a computational problem and does

not affect the theory.

Equations (3-8) through (3-15a)treat the variations in state velocity
as functions of the variations in state and variations in the control vec-
tor, a. It is often desirable to study the effects of variations in per-
formance parameters such as power, exhaust velocity, propellant flow,
etc. For this purpose one may rewrite the vector a and the propellant
flow equation in terms of the appropriate parameters. New matrices
A and B will be formed for this purpose. These cases are derived in
Appendix C since they do not contribute to the discussion of guidance.
However, occasionally in the guidance problem it is desirable to work
with the thrust, f, as the control instead of a. The theory subsequently
presented is applicable to this formulation also. For the present,

however, the form
5s = Abs + Bba (3-16)

is considered to be the fundamental formulation for the guidance prob-

lem.

With the perturbed equations of state, as defined by (3-16), and
using the adjoint method, it is possible to derive a state transition equa-

tion.

3.6 Method of Adjoints

One description for the method of adjoints is obtained by consider-

ing a set of equations related to (3-16) by the matrix equation
A=- AA (3-17)

Equation (3-17) , with arbitrary boundary conditions, is said to be ad-
joint to (3-16) and the elements of N are the adjoint variables. If equa-
tion (3-16) is premultiplied by N, (3-17) post-multiplied by &s and the

resulting equations are added, then one obtains

% (Ads) = ABéa: (3-18)
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Along a given reference trajectory, i.e. %a = O, equation (3-18) has the

solution
/\65 = constant vector (3-19)

If (3-17) is integrated along the trajectory, subject to suitable boundary
conditions, then A is a known function of time and the state variation
at any time may be determined from the state variation at any other

time, provided the reference control program is used.

The adjoint method may be described as the process of introducing
a set of known auxiliary variables, A, which satisfy (3-17) and which
transform the state variation at a given time into the state variation at

any other time, provided a forcing function does not exist.

A scalar approach to adjoint equations and other examples of their

application are presented in Appendix B.

A useful system of equations closely related to the adjoint set is a
set often called the fundamental set or fundamental solution. It satis-

fies the relation

d-ad (3-20)

Combining (3-20) and (3-17) by the appropriate pre-and post-multiplica-

tion, adding and integrating, yields the first integral
_/\(b = constant matrix (3-21)

If the boundary conditions are chosen such that

Aty =1 (3-22)
do) -1 (3-23)
then AD = A0 = &ty (3-24)

This relationship is useful in later discussions.

3.7 The State Transition Equation

If equation (3-18) is integrated between the times tl and t2, the
result is
t2
Aybs,= Njss + [ ABsadt (3-25)
t
1
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Then, provided J\.z is nonsingular
t

2
_ -l -1 _
b5, = AT A 8s + A tf AB 8a at (3-26)
1

A proof is presented in Appendix C that ./\_1 is not singular.

The product ‘/\'i_l /\_j is called the state transition matrix and is
denoted by Tij’ where i and j represent any two times. Equation (3-26)
is called the state transition equation. It transforms the state varia-
tion at t, and the control perturbation between tl and t2 into the state

1
variation at t2 .

There are three useful applications of the state transition equation:

1) It may be used as a tool for studying the sensitivity of the
trajectory to perturbations in launch conditions and to anoma-
lies in engine performance. Friedlanderlo has performed
some investigations in this area. This application is not
pursued further in this report except for derivation of appli-

cable formulations in Appendix C.

2) If engine performance is measured by an accelerometer or
other device which can be related to the state equations, then
the state transition equation may be used in the navigation of
a spacecraft by relating the measured engine performance to
the state of the vehicle. This application is discussed in
Chapter IV.

3) The most important application of equation (3-26) is its use

in guidance. If, in (3-26) , t, is considered as the final time,

then the state and control erf‘ors occuring along the trajectory,
may be related to the final state variation. Since the mission
objective may be defined by the final position and velocity vec-
tors, (3-26) meets the requirements for a guidance equation
provided that, for any state variation 6§t it is possible to find
a solution a + 6a which will cause the vehicle to match the
physicalboundary conditions at the terminal point. For this
application the terminology ''guidance equation' is preferable

to "state transition equation'' and will be used to define the
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equation when ty is the final time and the boundary conditions
on the adjoint variables are chosen as A(tf) = I. Thus the

guidance equation is
by
6s.= A, 6§t+tf AB 6a dt (3-27)

where the initial time t is any time between the launch time

and final time, at which a new control program is desired.

The integrand in (3-26) and (3-27) is observed to be quite simple

when the matrices are partitioned and expanded. For the control vec-

torg
A1l A1z @
Nl A1 Aoz © (3-27a)
T T
0" 0" Ay
Using (3-10) and expanding
ASY:
= 3-27b
AB N22 ( )
og
m
N33 5
| a |

where A 33 is a scalar and the remaining MA's are three by three

matrices. The vectors are three component null vectors.

3.8 Solution of the FTA Guidance Problem

The arguments presented in this section are equally valid whether
the desired solution is the acceleration program a + a or a thrust pro-
gram f + 6f. A discussion of the requirements for and the consequences
of interchanging control vectors is presented in Appendix C. Since the
propellant expenditure is so easily written in terms of the acceleration
integral, especially for VSI vehicles, it is computationally convenient
to work with a as the control. If a is used in solving the guidance prob-
lem, the set of adjoint functions, N, may be reduced immediately from
a seven by seven matrix to a six by six matrix since the equations of

motion, (3-3), do not contain mass explicitly and the "'mission' is to
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satisfy terminal conditions on the equations of motion. However, when
working with the CSI vehicle it is usually more convenient to use the
thrust, £ Acceleration is used for both vehicles in this report in order
to be consistent. Since thrust and acceleration are related through
mass, the equations of motion using thrust as a control must contain
the state variable, m. For this reason the adjoint set cannot be re-
duced a priori to a six by six matrix. In recognition of this fact and
since both control vectors are useful, the A matrix is always con-
sidered to be a seven by seven matrix; with the understanding that if
ais the control, certain elements are identically zero. This does not
present any problem in manipulation and need not be considered fur-
ther except when A and B are to be evaluated numerically. In the
subsequent discussion, however, a reduced adjoint set is introduced
and is denoted by A * This reduction is not associated with the dif-
ference between acceleration and thrust formulations. Both a A ma-

trix and a A * matrix exist for each control vector.

From equation (3-27) it is clear that if a state variation exists at
time t, then in the absence of control changes, a variation in final

state will occur which is given by

bs - _
sp= N 6s, (3-28)

The guidance criterion is that the final position and velocity must satisfy
mission requirements. Presumably the reference trajectory satisfies
these requirements. Thus the position and velocity variations from the
reference must be zero at the final time if FTA guidance is used.
Stated mathematically, it is required that
fo
6§f = (¢] (3-29)

Smf

where 6mf is a small but unknown variation in final mass. Whatever
the value of émf, it is of no immediate concern. To reflect this it is
convenient to drop the ém, and define the "miss'' at the target which

arises from the state variation at time t as

£,7 A 8s, (3-30)

34




where £ is a six component vector of position and velocity variations
and A *is a six by seven matrix obtained by deleting the seventh row
of A.. Clearly Gmf can be obtained, once the corrected control is

known, from

t
£
- T T
Bmf-/\.7t6_s,_t+tf A o B6adt (3-31)

where A 7Tdenotes the deleted seventh row of the adjoint set.

Since the state error Bgt is assumed to be small, so that linear
theory is valid, it follows that a small correction to the reference con-
trol program will be sufficient to null the miss vector in the remaining
flight time. The foregoing is true provided the vehicle has sufficient
thrust. That is, it is not "'in extremis''. Assume it is not. Then the

miss may be reduced at a rate such that
£= A*Boa (3-32)
or by integrating, such that
by
9—§t=tf A* B sa dt (3-33)

That the control 6a is not unique, except for a ét which requires
maximum thrust continuously, is evidenced by the fact that for ballistic

guidance, ideally, only two corrections are needed to null position and

velocity error; a midcourse correction to correct position and a termi- -

nal correction for velocity. Thus for continuous thrusting vehicles an
infinity of solutions exists. The criterion for selecting a unique con-
trol has already been given; the acceleration integral J or J * must be
minimum. Mathematically, the problem for VSI vehicles may be

stated: It is required that
t

f

{9} =t + [ ABéaat (3-34)
5 fd
9 t
and that J is a minimum, where
't (a + 6a)T (a + 6a)

g- [ aroa) arba) g (3-35)

¢ 2
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For convenience define the optimal control, go
a’=a+da (3-36)

raints on io the set (3-34) and (3-35)

o+

For a VSI vehicle with no cons
can be solved by a direct application of the calculus of variations. The
vector space around the reference trajectory is explicitly assumed to
be flat to first order. Consequently /\_ and B are invariant between

neighboring trajectories. Thus
t. ol o t
fa a f
6 f:—_dt-f-zT §+f /\_*B(go-g)dt1 =0
J : )

where 7 is a vector of constant Lagrange multipliers and the subscript

(3-37)

on ét is dropped. Expanding (3-37) one obtains

oT T
a~ =-71 A*B (3-38)

The vector 7 is eliminated with help of equation (3-33).

( kS

1 91 =£ - f N B{BT J\_*T T+ a} dt (3-39)
OJ t -

N

-1

—a=Ml(g-§) (3-40)
where
Ly
M= [ A*BBLT AxTat (3-41)
£
te
n= [ A*Badt (3-42)
£
Thus
a® = BT AxT Mt (5 - (3-43)

The solution (3-43) is valid provided the reference trajectory is suffi-
ciently close to an optimal that 6a is small. It is unique provided M is
not singular. A proof is presented in Appendix C for the existence of
ML |

A physical interpretation of the quantities M and 7, defined by
(3-41) and (3-42), is valuable in understanding the solution. First ob-

serve that £ has two interpretations. From (3-30), £ is the miss
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arising from a state variation, 6s »

From (3-33), - £ may be interpreted as the miss that results from a

when the reference control is used.

control variation, 53, occuring after time t but with 63 = 0. Similarly
from (3-42), - 1 is interpreted as the particular miss that arises if
6a = -a; that is, coast is initiated. If the miss, é, due to a state varia-
tion and the miss, - 77, due to initiating coast are such that (E-n) = 0,
the optimal control is the null vector. Although such a solution will
generally violate linearity assumptions, it will indeed result in a mini-

mum J, namely zero.

If the product A * B is interpreted as the sensitivity of the final
miss to a unit impulse in each component of the control at time t, then
M may be considered as a weighted total sensitivity of the miss to a
unit control applied continuously between t and te. In a physical sense
the procedure computes the vector sum of the miss using the reference
control vector and the miss using a null control vector; then selects
the control at each point according to the sensitivity of the miss at that

point.

It is interesting to note the solution which results if, instead of J,
the minimization criterion is
ty 6aT da
s= [ — =t (3-44)
i 2
Proceeding as in equations (3-37) through (3-41) but solving for 6a, the

result is

a®=a+ba=a-Bl Axt Mg (3-45)

Comparing (3-45) with (3-43) it is observed that for a = BT A*T M—lﬂ
the results are the same. The preceding expression for a satisfies
(3-42) therefore for small variations around the reference trajectory
the two methods result in the same control. This is only true for VSI

trajectories, however.

Before proceeding to consider CSI solutions it is desirable to
examine the consequences of the reference trajectory being optimal

for the initial launch point. If the reference is initially optimal but a
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state variation occurs such that a miss, §, will result from use of the
reference control program, the reference control ceases to be an
optimum because the boundary coenditions are not satisfied. Also the
particular formulation used for the problem does not result in a singu-
lar M matrix as is often the case. Therefore, in this study, the only
consequence of using an optimal reference is the assurance that éa

will not violate linearity assumptions.

A new approach is now presented which can be used for both VSI
and CSI control. To illustrate this method the VSI problem is solved

again but with a constraint.

Assume that thrust is not to exceed an amount fo' Therefore
thrust acceleration cannot exceed fo/mmo. To be consistent with the
normalized mass variable, m, used in this report denote fo/mo as the

initial acceleration limit a. The constraint may now be written as

8lo”

a< (3-46)
Following Kalmam16 and using Pontryagin's principle (Appendix D),
form the scalar Hamiltonian, H

(0] O

a 2

H=— " + yp
2

(3-47)

The theory states that if the costJ((ao)z/2)A‘gis to be a minimum, then for
each point along the trajectory H must be a minimum, where V is an
unknown vector, often called the costate, which satisfies the adjoint
relationship, andé is the state velocity. The linearization in this chap-
ter permits considerable simplification. Using (3-32), é is interpreted
as a variable representing the velocity of the final state. The variable
ét is the initial condition for é and is a function of the lower limit of

integration, t. is evaluated from the vehicle state, 6s,, using (3-30).
g £, s g

t}
Because § is a variable in state space at the final point, v is a constant
vector. In particular it is the final value of the general time varying

costate vector.
Therefore, using (3-36)
£ = A*B(a° - a) (3-48)
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Further

30 EO T o
H=——— +v" A*B(a - a) (3-49)
5 ad
T
ao ao
H=- KT N Ba + 4 KT A BEO (3-50)
2

The first term in (3-50) is a constant independent of _a_o, thus H is a

minimum when the sum of the last two terms, H,, is a minimum.

1}
The control go is to be determined such that H1 is a minimum.
oT o
E ?,'. T fo)
minimize H1 = ——— +v° A*¥Ba (3-51)
2
a,
subject to a< — (3-46)
- m
now let vI AxB =gt (3-52)

Since q and go are both three component vectors, one may be obtained

from the other by a scalar multiplication and a rotation. Thus
a®=yCq (3-53)

where v is a positive scalar and C a coordinate rotation. Inserting
(3-93) into (3-51)

H =29 +,4Tcgq (3-54)
2

For any value of y, H1 is minimum if _ciTCg has maximum magnitude

and is negative. But

lqtcql < Iq] gl (3-55)

where equality holds for C = I. It is apparent that H1 is a minimum

only if C = - I and (')/2/2 - ) is a minimum.

2 . o
H, = <-72— - ) q (3-56)
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Thus when constraint (3-46) is applied, H1 is a minimum if and only if

e} ao 4 alo '
3 SO q> _ (3-57)
m q m
o j 3
a®=-g q< =2 (3-58)
T m
%
Y = min 1, —— (3-59)
mq
or
a®= -y BT AxTy (3-60)

Comparing this solution with the variational solution, equation (3-38),
one observes that except for the constraint y the solutions are identical
and ¥ = 7. 7y may be interpreted as a switching function which carries
the thrust restriction (3-46).

Having gained confidence in the Hamiltonian, now apply the method

to the CSI transfer for which the classical approach is degenerate. The

appropriate cost is ty 4 a°
Je= [ 2 dt, (2-19)
t 2m
Minimize o
a_a T o
H =2 +v- A*B(2° - a) (3-61)
2m -
a
subject to a < 2 (3-46)
T m

Again _V_T./\.* Ba is a constant, therefore

a

minimize H1 =2 3%+ g_T go (3-62)
2m
Where q is defined as before.
The previous argument holds, to yield
a%=-ygq (3-63)
and
%o

H, = _ - 3-64
1= ( o q) q ( )
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In this case H1 is a minimum if and only if

a®=-yBTAxT Y (3-65)
where
-~
a, )
y=20 Q< —
2m
< 3 (3-66)
a'O a'O
Yy — q2—
q mgq 2m

For the case q = ao/2m, Y is actually indeterminate. However this is
not an important consideration for this thesis since equality holds only

for infinitesimal time periods.

Equations (3-65) and (3-66) yield the '"bang-bang' solution char-
acteristic of optimal trajectories for which the cost is a linear function
of the control. Again, the solution is strictly valid only for perturba-
tions around a reference trajectory. In order to complete the CSI solu-
tion it is necessary to evaluate the constant vector v. The evaluation
is more difficult in the CSI case than for VSI because the control pro-
gram is discontinuous. V is evaluated by first applying the boundary
conditions (3-34) and using (3-36).

t
O=¢(+ [ A*B(a®°-a)adt (3-67)
t

Assume that io and a differ only because their respective values of y
and V are different. The assumption merely implies that A* B is the
same for neighboring trajectories. With this assumption rewrite
(3-65) as

E:0 - - 70 BT_A,*T KO (3_68)

for the corrected control program, and let

a=-y BT AxT 14 (3-69)
represent the reference control program. Then (3-67) becomes
Lf
O=¢- [A=BBTA*T (200 -yu) at (3-70)
t
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which may be rewritten as
ty

t= [ Ax*BBT AxT A uv)at

v

(3-71)

The increment A (Y v ) represents the difference in the control pro-

gram between the reference trajectory and the corrected trajectory.

Since Y is a function of ¥, a solution may be obtained by formally

differentiating and solving (3-72) for A v.

t
f
§=[-8— [ AxBBT AxTypa

8zt

(3-72)

The functiony is discontinuous at switch points, which occur at times

tk in the interval tf - t. Consequently the integral (3-72) must be

separated into regions of coasting and thrusting and Leibniz's rule

used for the differentiation. A term of the form

Btk

+ A*B BT ./\,*T)’ v 'tk— A v results for each switch point, where

oy

plus is for switch off and minus is for switch on.

The term 3y /8 v is evaluated in the continuous regions from the
definitions (3-52) and (3-66). The term Btk/azis evaluated by con-

sidering
q=q(tv)
From (3-66)
%o
q(t,v) =
2m

Differentiating (3-74) with respect to v, one obtains

ot
aq ko, 99  _ 0
ot 81/_ BK
9q
atk - BK
oq
oy E
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The derivatives of ¥ and q are evaluated in Chapter VI when it becomes

necessary to specify the explicit form for computation.

Solving for AV, one obtains

1

Ay =M+ " § (3-77)

where

t
£ ot
M* = f_/\_* B BTJ\j‘T[’yI +v ﬂ] dt /% BBTJ\_”<T YK"‘ltk _k
; :

) oy
o - (3-78)
The constant vector v~ is obtained from
KO :K+AZ (3-79)
where
v=-M1g (3-80)
te
M= [ y AxBBT A*xT at (3-81)
t
and
te
n=J) A¥Badt (3-82)
t

The values for 'yo are obtained from equation (3-66) by using the com-

puted Ko in q.

With all quantities defined in the preceding equations, the corrected

control program is given by

2= 0 BT AT (w7t - w7y ) (3-83)

3.9 Application of the Guidance Theory

In order to use the theory of section 3. 8 for the guidance of space
vehicles it is necessary to compute the quantities in equation (3-43)
for VSI guidance or in equation (3-83) for CSI guidance. Since (3-43)

may be regarded as a special case of (3-83), only the latter is discussed.

If the reference trajectory is known, then the elements of the ma-

trices B, A, M, and M* and the components of the vector 7 can be
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computed for any point along the trajectory. Whether these quantities
are precomputed and stored prior to launch or are computed on board
as needed will be determined by the state of computer technology when
the vehicle is designed. ‘I'his problem 1s not relevant to the present

discussion. In either case, the first step in computing the corrected

control is to establish that a state variation, 6§t, exists. Methods for
processing measurement data for this purpose are discussed in Chap-

ter IV. Then the final state error is determined from (3-30).

£ = ‘A’t 6§t (3-30)
The vector _l_/o is computed from the known quantities and the final state
error using (3-77) through (3-82).

-1

PLemeleg oMy (3-84)
From (3-52) and (3-66) q° and ¥ may be computed.
g = | BTAXT 1,0 (3-52)
(@) O aO
y© =0 q°< ==
. 2m (3-66)
(o] 8‘O (o] 3.0
-}/ = 5 q z —_
maq 2m
Then from (3-68)
E.O - ,yo BT_/\_*T Ko (3-68)

This result may be programmed into the vehicle control system to

implement FTA guidance.

3.10 Discussion of the VTA Guidance Problem

In Chapter II it is shown that in field-free space, the minimum
acceleration integral for VSI vehicles is J = 6L2/T3. A VTA guidance
scheme which minimizes J for a given L in field-free space will there-
fore select an infinite transfer time unless constrained. If the planets
were all in coplanar, circular orbits and the reference trajectory lay;
in this plane, a similar result would be obtained in the solar system.
Because of the inclination and ellipticity of planetary orbits, local min-

ima of J will occur which depend upon planet and .spacecraft
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orientation. A complete relaxation of the time constraint, tf, in the
theory of sections 3.8 and 3. 9 would require that the new arrival time
correspond at least to a local minimum of J. Therefore, unless tf is
approximately equal to this propellant-optimal arrival time, linear

theory cannot be used to obtain propellant-optimal VTA guidance.

However, it is possible ta restrict the change in arrival time, use
linear theory and obtain useful solutions. A case where this is impor-
tant occurs for a vehicle "in extremis'. That is, insufficient power

(or thrust) is available to null £ at time t The result obtained is

£
dependent upon the method of restricting. At and upon any simplifying
assumptions. Consider the following example which is based upon the

assumptions:
1) The target point relative to the planet center is unchanged.
2) The final velocity relative to the target point is unchanged.

3) The thrust acceleration a;=a (tf) is constant over the interval.

The motion and position of the target point at the time tf + At are
r'p (tf+At) =£T(tf) +_v_p At (3-85)
XT(tf+At):XT(tf):Xp+XR+gT At (3-86)

where Xp and v , are the planetary motion and the desired relative

R
velocity, respectively, and gT is the solar gravity at the planetary

radius.

For the mission to be accomplished, the vehicle position and veloe-

ity must equal rr and v at time t, + At. The vehicle position and

velocity in terms of the reference trajectory are

at\?
(i At = r (1) + Or (t) + v (1) At+a, (7) + By (tg) At
(3-87)
V(tet At = v (1) OV (t) +ap (At) + g At (3-88)

Solving equations (3-85) through (3-88) for 621‘ and 6Xf one obtains
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_ At
6£f =-Vgp At - bv 5 (3—89)”

bv, = - a, At (3-90) .

For the linear approximation assume 6Vf/2 << VR Equations (3-89)
and (3-90) may be inserted in the guidance equation.

¢
£
v
{TRAAt g+ [ AxBsadt (3-91)
a¢ t

Defin(le a new miss vector _§_* such that

‘ Ly Sr Yy
£x = = + At (3-92)
€% £y gy

Then by selecting At such that the uncorrected final position error,
| &%,

time tf + At and with the least departure from the actual trajectory.

, is a minimum, the vehicle will attain the terminus but at the

The result is

At=-——2 T (3-93)

Equation (3-93) may be inserted into (3-92) and the optimal control

program found using the FTA procedures of sections 3.8 and 3. 9.

If the target point is the planetary sphere of influence and the de-
sired relative velocity is zero, obviously the above solution is invalid.
Other assumptions may be used to treat such cases. The assumptions
to be used and the criterion for restricting At may be changed to suit
the purposes of the investigator. In general, the propellant-optimal
VTA problem is not readily treated by linear methods unless additional
constraints are used. Exploring the numerous possibilities that arise

will be left for future investigations.
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CHAPTER IV

ESTIMATE OF THE STATE VECTOR

4.1 Introduction

In this chapter a method of determining a ''best estimate'’ of the
vehicle state vector is presented. The term ''best estimate'' is used
to designate the estimate for the state vector computed by processing
redundant measurement data through a statistically optimum filter.
Potter and Stern32 have shown that all of the three commonly used
methods of processing redundant data, namely, maximum likelihood,
minimum error ellipsoid, and minimizing a characteristic scalar
parameter all result in the same filter. They have shown further that
for each unbiased optimum filter, there exists an associated biased
optimum filter which produces a smaller error ellipsoid for the esti-
mate.

Since all of the methods result in the same filter, in this thesis
the method which presents the least mathematical complexity is used.
The method involves a slight variation of the minimum error ellipsoid

technique.

4.2 General Remarks

To establish a corrective thrust program it is desirable to have
accurate knowledge of the state vector at the time the program is to be
initiated. It is clear that given perfect knowledge of some prior state
vector and of vehicle performance the prediction problem reduces sim-
ply to application of the state transition equation between the time for
which the state is known and the time for which the prediction is de-
sired. It is equally clear that perfect knowledge of a prccess seldom

exists. Thus the problem becomes that of using existing information

An unbiased filter will produce a true value for the state vector if
all measurements are free of error. A biased filter is biased in favor
of the a priori or prelaunch expectation of the second moment of the
state vector probability density.
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in such a way that its inaccuracies have minimum effect on the guidance

decisions.

For ballistic vehicles the determination of position at two points
along the trajectory suffices to specify the entire trajectory. Several
investigators including BattinSO and Stern31, have studied the effects
of using additional fixes and of selecting the geometry of individual
celestial measurements to reduce the error in the trajectory determina-
tion. The techniques developed in those studies may be extended, in
some cases without change, to the present work. The primary differ-
ence between the ballistic and continuous-thrust vehicles, is that the
future portion of the actual continuous-thrust trajectory can never be
completely determined on the basis of its history alone. This fact is
due to the possible occurrence of random changes in the thrust vector.
Another difference, which is more easily treated, is the first order
dependence of the trajectory upon vehicle mass. This dependence may
be handled by measuring propellant state at discrete intervals as well

as making celestial measurements.

Thus for the continuous-thrust spacecraft, state determination from

on-board measurements may be separated into two related problems:

1. determining the state history by suitable filtering of all meas-

urements that have been made, and
2. predicting future values of the state vector.

The second of these is dependent upon but is not uniquely determined
by the first.

The use of celestial sightings, as in the case of ballistic transfer,
is sufficient to determine the spacecraft trajectory. However such
measurements are not sufficient to specify the entire state history nor
the variational history of the control vector which contributed to the
state change. Because of this; prediction of the state vector solely
from periodic celestial sightings and propellant measurement will be
subject to larger uncertainties than if the prediction includes meas-

urements of the control vector as well.
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4.3 Unbiased Estimate of Present State

The term ''present'' state will be used to denote the state vector
computed without regard to a computational time lag, thus, it is the

state at the time of the most recent measurements.

The measurements which will be processed for the estimate are
1) periodic determination of position, 2) propellant state, and 3) con-
tinuous measurement of engine performance. It appears quite feasible
to derive a method of including raw celestial observations in the compu-
tation process without explicitly deriving the position vector. How-
ever, this would contribute nothing to the present argument and will
be left as a subject for future study. Consequently, the computed com-
ponents of position variation will be considered as a ''measurement''.
Since velocity is impractical to measure directly, except near planets,

the velocity will be derived from successive position measurements.

The time of the present state estimate will be chosen as occuring
between celestial ''fixes''. If the state at the time of a fix is desired,
such an estimate will be a special case of the more general problem.
This approach is justified on the basis that celestial observations may
be separated by several days but current engine data is always avail-
able.

In the following development measured quantities will be denoted

by the ''tilde' (~) and the estimated quantity by a carat (A).

The relation between the measurement quantities and the state may

be written as:
Nés =6q (4-1)

where N is a k by seven deterministic matrix relating s to Sg.
6 is the state to be computed
&6q 1is a column vector whose k components are the meas-

urement data.

The matrix N may be derived directly from the state transition
equation written between the time for which the estimate is desired,

t =t and any previous time, t = t..
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tl’l
6s.=T. s -A' [ ABoaat (4-2)
=1 in =n i 7 = )

1

where T, = A\ i-l N - For simplicity, the integral term in equation

(4-2) may be considered as a vector.

t Ar

-1 n -
A [ ABoadi= <Ay (4-3)

t Am

i
and the transition matrix Tin as a par‘titibned matrix of partial deriva-

tives. Thus, if only the position vector at ti is considered, one obtains

or . 83. or . 6£ S

ér . + Ar, = |-—2 LA — &v (4-4)
or v om 5
—n —I m

n

where the matrix of partial derivatives consists of the first three rows

of Tin' Equation (4-4) may be written for any number of times

ti (i=n-1,n-2....). An analogous equation may be written for

the propellant measurement and the results arranged in the form of

equation (4-1). One might expect the propellant meas‘urement to be

less critical and less subject to error than the other measurements.

Consequently it may be necessary to include only a few measurements !

of propellant, perhaps one or two.

Let us consider now the problem of finding an unbiased filter, FO’ !
which minimizes the error in the state vector and satisfies the rela-
tion

68 = Fy6q (4-5)

If the uncertainty in the state vector is u and the error vector associat-

ed with measurement is €, then

6§q=58q+€ = N bs + Nu (4-6)

[Noly]

Since the true measurements and the actual state vector satisfy equa-
tion (4-1), then

€= Nu (a-7)




The equation for the error ellipsoid associated with the measure-

ment vector is given by
€ E "€ =1 (4-8)

where
E=<e € > (4-9)

is a k by k matrix and the brackets denote the mean value. Equations
(4-6), (4-7), and (4-8) may be combined to yield '

T T 1 ~T T, ~-1

ul NTE lNu=(6gT-6s) N)E ™! (6q - Nés)

(4-10)

If the partial derivative of equation (4-10) with respect to the compon-

ents of the state vector are set equal to zero, one obtains:

T
ou ) -~
2 <;> NTE lNu=-2nNT E! (69 - Nés) = 0

8si = = = (4-11)

The solution to equation (4-11) is the estimate, 6%.
88 = (NT g ly ' NTED 6q (4-12)

Thus for the unbiased filter, equation (4-12) yields:
Fo = (N gyt NTED (4-13)

It is not surprising that the filter of equation (4-13) is the same filter

derived by Potter and Stern using the method of maximum likelihood. 32

4.4 Biased Estimate of Present State

The proof that a biased estimate will result in a smaller ellipsoid
of error will be omitted since this topic is well covered in the litera-

30,31,32

ture In this section only the method of obtaining the biased

filter from the unbiased filter will be presented.

The optimum biased filter, FOB’ is obtained by deleting the last
seven columns from an associated unbiased filter which is computed
using a fictitious measurement of present state. Thus the measure-
ment error vector to use for computation of the error covariance

matrix E is
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(
En—lw
£h-2
€ ), > (4-14)
- nf’g J

The last seven rows of the N matrix must then be the seven by seven
identity matrix. The resulting unbiased filter FO computed from
equation (4-13) but with the last seven columns deleted defines the

optimum biased filter, FOB'

4.5 Covariance Matrix of Measurement Error

The matrix E is extremely important in the computation of the
state estimate. Since it involves the measurement errors from both
discrete and continuous measurements, it is worthy of closer examina-

tion.

In section 4. 3 a subvector of the measurement vector ég was

written in the form
6gi=6£i+A£i (4-15a)

From equation (4-3) it is apparent that

n
~ _ _1 ~ _
Ar. =[1; 0,0, A, if AB 6a dt (4-15)

where 13 is the three by three identity, O3

matrix and 93 a three component null vector. Thus a measurement

of position consists of two parts: the celestial fix, 6£i’ at time t = ti,

is a three by three null

and an additional vector Agi which contains the integrated engine vari-
ations from ti to'tn. As a consequence, the error vector at time ti
will also consist of two parts,
-
€, = €.,+v[130,0,1 A, tf ABe dt (4-16)
i

which for simplicity will be written as
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n

e.=€ .+ [ D.e_ dt (4-17)
—1 —I1 1—a

where € ri is the error in determining position and €, is the error in

measuring the engine quantity.

It appears justifiable to assume that measurement errors of dif-
ferent types, i.e. position, propellant flow, acceleration, are indepen-
dent and have zero means. Further, that the position measurement
errors for two different times are independent. The assumption of a
zero mean for measurement errors does not result in a loss of gener-

ality, however it greatly simplifies the mathematics.

With the above assumptions, the E matrix includes terms of the

following form:

1) On the diagonal

tn tn
<E€ .eT.‘> +<f D.e_dt f eTDTdt> (4-18)
—ri1—ri 1—a —a 1
. £
1 1
2) Off the diagonal
t t
n n
< [ De at [ ef D at> (4-19)
£, T& o T
i j

Using the theory for handling random processesBSﬁ the integral

terms are easily reduced to the form
t t
n n T
tf D, (t,) tf 6 (t1ty) Dy (ty) dt, dt, (4-20)
1 J

where 6 (tltz) is a diagonal matrix of autocorrelation. functions. To
proceed it is necessary to make some assumption about §. The most
easily justified assumption is that the engine measurement errors
each contains much higher frequency components.thandoes the matrix
Di and each is uncorrelated except over short intervals. Thus, over

the period of integration the measurement errors approach a "white
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noise' distribution. With this assumption 6 is reduced to a diagonal
matrix of constants representing the measurement error variance

multiplied by the Dirac delta function.

a“ 0
m

9 = 6 (ty -ty) (4-21)
0 oi 2 1

(Measurement of propellant flow and exhaust velocity are used as ex-

amples in (4-21).) Designate, for simplicity

6 =), b(ty-t,) (4-22)
where E is a diagonal matrix of measurement variance.

One integration of the terms in (4-18) and (4-19) rnéy be performed

to yield

tn
tf D, ), D;F dt (4-23)
k

where the interval k to n represents the shorter of the intervals i ton
or jton. The E matrix formed from these elements is a symmetric

positive definite matrix.

The necessity for including engine measurements in the estimate
of state for low-thrust vehicles is made evident by equation (4-24).
Note that the measurement error vector, when position data alone is
used, would contain integrals of the actual engine variations. That is
t

n

€ e tf D, 8a dt (4-24)

i

Assuming that the engine measurement errors are much smaller than
the engine variations to be measured, equation (4-24) would result in a
sizeable increase in the error ellipsoid. In addition, as the interval

i to n increases, the value of the celestial fix at time ti is rapidly de-

graded due to the effect of the increasing value of the integral term in

the E matrix.
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4.6 Estimate of Future State

As noted previously, the future state vector of a continuous-thrust
vehicle is not a deterministic function of the state history due to short
period random variations and, perhaps, long term degradation of engine
performance. If engine degradation, presumably in the form of loss of
specific impulse, does not become a factor, the space navigator would
be justified in assuming a zero mean for engine variations. With such
an assumption a filter, biased to include a priori information of engine
statistics and a priori information on state statistics, may be construct-

ed which will produce an optimum prediction of future state.

If long term variation in engine performance is evident, the naviga-
tor is faced with the problem of extrapolating accumulated engine data
in order to make a prediction with acceptable confidence. Certainly,
sophisticated analytic techniques exist for smoothing and extrapolating
the measured engine data. However, in this section we shall only be
concerned with using data, regardless of the manner in which they are
processed, to predict a future state. For example, simple graphical

extrapolation of plotted data will suffice.

Two prediction techniques will be presented, 1) a very simple ex-
trapolation technique for short term prediction and 2) an optimum filter
technique for long term prediction. The first method assumes the
present state has been determined by the methods of section 4.3 or 4. 4.
It uses the state transition equation and an estimate of engine perform-
ance to predict state in the near future. The estimate is

tn+1

A - A -1 A
68 17 Tor1n 80t Mo tf AB 82 dt (4-25)
n

where the notation t = will indicate the future. This method may

t
nt+1 .
be characterized as an extrapolation of filtered data and may be quickly

computed.

The second method uses the optimum filter of section 4.3 but in

this case a representative subvector of the measurement vector is
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t th+1
~ - - A
6q,=8r.+ [ D sadt+ +f D, 6% dt (4-26)
1 “n

the error vector associated with the ith position measurement is

tn tn+1 A
€ = Eri+tf D, e, dt+ tf D, €, dt (4-27)
i n

where 6@ andga represent the extrapolation of engine performance and

the error in that extrapolation, respectively. .

The optimum biased filter of section 4. 4 may be used without al-
teration; however, the covariance matrix of measurement error will be

more difficult to compute.

This second method may be characterized as a filtering of extrap-
olated data and should be used for long range prediction. The proof
by Potter and S‘cern32 shows this second method to be optimum and
intuitively it appears to be of correct form. By comparing expressions
for the covariance matrix of uncertainty in state at time tr1 for the
two methods.

U=<uu’> (4-28)

it is apparent that both methods result in the same error ellipsoid as

tn+1 approaches tn’ For both methods:

-1
U= (NTE N (4-29)

tn+1—>t

thus the assertion that the simple technique will be quite adequate for

short term predictions appears justified.
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CHAPTER V

TRAJECTORY DETERMINATION

5.1 Summary of Chapter V

In this chapter the problem of finding a trajectory which satisfies
the end condition, the propulsion restriction and which minimizes pro-
pellant consumption is discussed and illustrated with the VSI trajectory.
The problem is formulated using the classical methods of the calculus
of variations. A new interpretation is presented for the results, which
are shown to yield the same control program as the Pontryagin maxi-
mum principle. The guidance theory of Chapter IIl is therefore sug-
gested as a trajectory computation scheme. Finally, qualitative as-

pects of low-thrust optimal trajectories are discussed.

»

5.2 General Remarks

A vast amount of effort has been directed in recent years toward
the study of optimization problems. Such problems belong to the cal-
culus of variations which owes its early development to such men as
Lagrange, Euler, Hamilton and Gauss. The introduction of high speed
computers has been the primary impetus in bringing renewed interest,
after years of limited application, to variatibnal techniques. Specifi-
cally, much recent literature treats the characteristics of, the neces-
sary conditions for, and methods of computing solutions to optimization
problems. Variational techniques are used almost exclusively as the
primary mathematical tool. The contributions listed as references in
this report constitute only a minor fraction of the published works.
These efforts have resulted in a large body of theory now called opti-
mal control theory which has application to virtually all optimization

problems dealing with dynamical systems.

A fundamental precept of the theory is that along optimal trajec-
tories, admissible first order variations in an unconstrained control

program cannot produce a first order effect in the cost function. For
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unconstrained controls, admissible control variations are those which
do not cause a first order change in boundary conditions. This princi-
ple is derived directly from basic equations and is part of the definition
of optimality in the calculus of variations. A mathematical consequence
of this principle is that certain arrays of coefficients, when evaluated
along the optimal trajectory, will have a zero determinant. When work-
ing with the practical problem of computing trajectories, or of guidance
around the optimal trajectory, the inverse of a matrix defined by such
arrays usually appears in the equations. Obviously the occurrence of

a singularity complicates the procedure of finding an optimal control
program and its associated optimal trajectory. It has led to investiga-
tion of second variations of the cost and the trajectorygg, to various
schemes for finding near-optimal controls12g and to optimal controls

which only approach the desired boundary conditions14

The implication of these investigations is disturbing from a physi-
cal viewpoint since they imply that an otherwise well behaved, smoothly
operating system, in some sense becomes uncontrollable along an
optimal reference trajectory. In reélity, singularities are more often
mathematical than physical. A further implication is, that although a
control can be found which approaches the optimal control to within a
small increment, it is orders of magnitude more difficult to find the

exact optimal control.

The physical world does not usually behave in such an unruly man-
ner, thus the answer must be: 1) the mathematics have an interpreta-
tion that has been coverlooked or 2) the problems may be approached

from a different viewpoint.

Actually, both 1) and 2) have validity. To support this contention,
the problem of generating an optimal reference trajectory for use in
testing the guidance theory of Chapter III is considered as an example.
To be sure, a conservative field such as the gravitational field is a
well behaved space in which to work. Undoubtedly, problems which
deal with dissipative forces or higher order nonlinearities may present
difficulties not readily resolved by the method of this chapter. Hope-
fully, however, it will provide an approach that can serve as a starting

point for more difficult problems.
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5.3 The Calculus of Variations Problem

In Chapter II it is shown that minimizing the acceleration integral
is equivalent to minimizing the propellant consumption for a low-thrust
vehicle. Thus the mass rate equation is superfluous for VSI trajecto--
ries anditis necessary only to work with the equations of motion and
the acceleration integral. For the VST vehicle the problem can be for-

mulated as: Given

r(0)=r, (5-1)
v (O) = y_,o (5-2)
satisfy
rit)=r; (5-3)
vit) = v, (5-4)
subject to
r=v (5-5)
v=-J3r+a (5-6)
r
and minimize ty
_1 2
J== [ a®adt (5-7)
2.0

A scalar functional, F, will now be formed using the well known =«
Lagrange multiplier technique.

2

T+ g roa 2 (5-8)
r 2

F=X, (F-v+2A

where lr and Av are time varying Lagrange multiplier vectors (or
Euler variables). The remaining variables have the same meanings
as in previous chapters.

Since the bracketed terms are zero, clearly

b
J= [ Fat (5-9)
0
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Integrating by parts and setting the first variation of the integral equal
to zero, one obtains
't - .
& J th=o=[x‘6r+x‘6v]
0 —-r = =v -

te

¢

£ )

- f [(AT AT er+aT+aTy ey (5-10)
0 Zr  Zv =~ ey

e & —m—

+(aT~Z\_3:) 53] dt

Applying the fixed end conditions and setting the coefficients of the
state and control variations equal to zero gives the Euler equations and

the boundary conditions.

3 /
/\ ., ? - . \/ (5‘11)
| 2y iﬁv -G O
\ 4 \
A
\ = ? ’ (5-12)
- |
\ } tf
.
=.? (5-13)
[ A
s 0
a=A_ (5-14)

Notice that the Euler variables, (5-11), satisfy the adjoint relationship
to the variational equations of motion and that the boundary conditions
are unknown. Equations (5-12) and (5-13) are written to emphasize

the unknown boundary conditions.

Clearly, if the correct initial value of the six component Euler
vector were known, the entire system of state and Euler equations
could be integrated simultaneously from t = 0 to t = t,. The unique
reference trajectory and its associated optimal control program would
then be kncwn. A procedure for finding the initial value is discussed

in later sections.
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A very annoying fact about the preceding approach to finding ex-
tremals in the calculus of variations is the necessity of searching for a
formulation of the problem which gives a meaningful result. Minimizing
the cost function J is known to be equivalent to minimizing propellant
consumption, thus one differential equation of state was eliminated, in
particular, the differential equation describing the rate of change of the
optimized quantity, mass. A simple answer resulted. It should not be
necessary to search for an equivalent formulation for a problem if the
set of differential equations describing the system is complete, linearly
independent and reasonably well behaved. Two different Mayer formula-

tions of the VSI problem help illustrate this argument.

For the first problem, minimize propellant consumption instead of
the acceleration integral. Equations (5-1) through (5-6) hold, but the
mass rate equation must be reintroduced. Thus it is required that

. 2.2
m=-217 (5-15)
2p

and that
ty
mp=0f —mdt=mo—mf (5-16)

be a minimum where mp is propellant mass. For fixed initial mass
the first variation of mp equals the variation of - me. Forming the

functional F

F=ALl(r-v)+rl
Zr = YT Ly

° u ©
(vt—zr-a+x_(m+
i m 2p (5-17)
then integrating by parts and setting the first variation of the integral

equal to zero as before, yields
t
f

tf
6 [ Fat=0= [)\Eﬁr+)\36v+(km-l)6m]
0 —-ro- -V - 0
tf C
- [()\ -2l G er
0 —r -V -
5 (5-18)
T T ; a"m
+Q\_V+§r)éz+()tm-)\m ) 6m
T m2 T
+(_A_V-)\m——§ )63] dt

P
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In this case the Euler variables for position and velocity again satisfy
equations (5-11) through (5-13). In addition

A,-1D =7 (5-19)
0
xmf =1 (5-20)
. azm
SRR =0 (5-21)
p
A
as — (5-22)
A2
Top

Equation (5-22) appears to differ from (5-14) by a scalar function of
time. Since the control program is unique (5-22) must reduce to
(5-14). By manipulating (5-15) and (5-22) it is possible to obtain

>

m .. (5-23)
)\m m

which has the solution
Am _ cons;:ant (5-24)

m

Applying the boundary condition (5-20)

2
My
A= —— (5-25)
m 2
m
Substituting into (5-22) b
a=—g 2, (5-26)
Mg




Equation (5-26) differs from (5-14) only by a constant which is easily
absorbed in the unknown boundary conditions on A v The Euler variable

)tm appears to have been superfluous.

Consider a slightly different formulation which is just as valid. Use

thrust as the control then

E: X (5‘5)
f
X:-%£+ﬁ— (5"27)
r
m = - — (5-28)
2p
te .
minimize mp = f - m dt (5-29)
0
Proceeding as before, the functional F and its first variation are
f 2
T, - T u f
F=A"(r-v)+A2  (vt—r-—)+A_(m+—)-m
=r ‘= = Zv ‘= r3 - m m 2p
(5-30)
te te te
6[th=0=[ ] -f[( )or
0 0 O
Tt
+( )BX+()\ -lv -—2)6m
m (5-31)
T
A A
+(—V -_”-lfT) 6t | at
m p -

The blank brackets contain the same terms as (5-18) and are used to

show the differences between the two formulations. In this case

f
. o 1
Am TAy 2 (5-32)
m
. ~v
£ (5-33)
P
M p
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Using (5-33) to eliminate A?; from (5-32) and using the state equation
(5-28), it is found that again

A =-2a B (5-23)
m
Solution (5-25) holds thus

£=Lm

| >

(5-34)

p
m2 v
f

which is the same as (5-26) since a = f/m.

The preceding VSI examples result in the same control and in none
of them is it necessary to use the variable )Lm. Before interpreting
what this means one additional example is presented which involves
placing a constraint on the thrust. Assume that

2 2

< 1 (5-35)

where fo is the thrust limit. Following Breakwell”, the constraint
may be handled by adding to the functional (5-30) the term
1
y (£ - £2) =0 (5-36)

1
where y is selected to satisfy (5-36). Thus for this case

B~=B5-3oﬂ+-y' (2 -fi) (5-37)
t; ot
) det=0=[ ] -,f [( )or + ( ) v
0 0 o0

T T

. £ A £
T — -V — 'eT
O R e L

(5-38)

where the blank brackets are the same as (5-31) and not needed in the

argument.

Consider the coefficients of 6m and 4f in (5-38)

f

Ay ~Ay—5 =0 (5-39)

T
m A

2




Ay
f= » (5-40)

Eliminating 53‘ in (5-39) by using (5-40)

. A 2

A =(y'+-_EL) T (5-41)

m P m
When f # fo’ ',v' must be zero to satisfy (5-36). Therefore the

solutions for )\m and { in such unconstrained regions can differ from
(5-25) and (5-34) at most by a constant. When f = fo the only admissi-
ble solution for (5-40) is

£ A
f=2=7 (5-42)
x|
-V
Therefore
C Amy Al
(y -+___) m = (5-43)
p £

With this result it is possible to rewrite (5-40) with a new variable y
such that

f=my A (5-44)

where ¢’

(5-45)

N -V 7

The Euler variable Am and its differential equation have again been

eliminated from the problem.

In the preceding examples the manipulations required to remove
Arn are not particularly difficult but by no means are they obvious. The
meaning of a superfluous Euler variable immediately comes into ques-

tion and it seems reasonable to inquire if there is general significance
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in this phenomenon or if the preceding examples are only isolated
special cases. Conceptually there is nothing about the variable )\m
which is unique except for its association with the cost variable m in

a Mayer form problem. In reference 17 Breakwell interprets the
Euler variables as the sensitivity of the absolute minimum of the cost
function (i. e. the unconstrained minimum) to changes in the state vari-
ables. Therefore for the problem of this thesis

ATy = —2 = A (5-46)

8§t agt

where m;‘ denotes the minimum value of mp obtainable from the initial
#<

state when no control constraints are used; similarly for - me.

In a typical two point boundary value problem with physical rates
of the form g = g (s,a), the usual objective is to find a control solution
which satisfies the end point. If any of the state variables have free
end conditions the solution is not unique. Optimization criterion are
then used to assure uniqueness. From Breakwell's interpretation,
when the Euler variables are formed iric z vector they describe the
direction in state space of maximum sensitivity of the cost, i.e. the
gradient. However for state variables involved in the cost function
such information is available directly from the governing differential
equations. In answering the question: "How do state variations affect
the cost?', the Euler variables provide a coupling between state vari-
ables and the cost function which for some variables is not evident
from the system equations. But for state variables involved in the
cost this coupling is essentially a priori information and is in some

sense superfluous.

The classical approach in the calculus of variations assigns an
Euler variable for each state variable. If a variable is superfluous it
should drop out of the formulation. But finding a way to assure that it
does may be exceedingly difficult, even when it is recognized that the
variable is superfluous. As is subsequently shown, the Euler variables
correspond to the costate variables in Pontryagin formulations. If the

variable is superfluous in the calculus of variations it is also superfluous
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using the Hamiltonian approach. This fact was tacitly acknowledged in
Chapter III when the state variation, 6mf,was dropped from considera-
tion and the last row of the adjoint set was deleted. The reason given

in Chapter III for deleting one row of adjoint functions was different

from here, but the result is the same.

The general significance of a superfluous Euler variable is indi-
cated by comparing the classical approach to the newer state space
approach using the Pontryagin maximum principle. The classical
formulation suffers from several difficulties, two of which are: 1)
The number of variables and equations are usually quite large and,
perhaps due to tradition, are often treated individually as scalars. As
a result algebraic detail often obscures important ideas in classical
formulations. The more compact vector and matrix notation are only
now becoming widespread in the literature. 2) The theory offers no
suggestion of how to solve for the correct boundary conditions on the

Euler variables.

However, an important attribute of the more detailed notation is
indicated by the preceding examples. By sufficient manipulation an
unneeded variable was eliminated. It is more than coincidence that
the variable is precisely the one that creates problems in the state

space approach.

The state space approach using vector and matrix notation as in
Chapter III is popular because of its compactness. Further, when
coupled with the Pontryagin maximum principle it may be used to
solve optimization problems including cases of linear control (the CSI
problem) which can not be completely solved in the calculus of varia-
tions. The approach also provides a method of determining the bound-
ary values for the costate variables. Finally, the optimality criterion

is more useful. This last statement is discussed fully in Appendix D.

In the state space approach the system differential equations are
written in vector form, an appropriate cost function is chosen and then
methods are sought to find the desired solution. From the references
previously mentioned it is apparent that the solutions often encounter

a singular matrix. In the problem of this thesis the singular matrix
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is denoted as Mo and is the seven by seven matrix corresponding to

M in Chapter III. These matrices are discussed in detail in AppendixC.
It is suggested that such singular matrices may be the result of attempt-
ing to optimize a function of state and at the same time retain a costate
variable (or Euler variable) which is superfluous. In the problem of
this thesis such was the case. It is further suggested that difficulties
sometimes encountered in numerically finding terminal values for the
Euler variables may alsc be due to the presence of a superfluous Euler

variable which was not recognized as such.

No attempt will be made in this report to derive the general rule
which will show when an Euler variable is superfluous and thus may be
eliminated a priori. It may be the case that those matrix elements
which cause nonphysical singularities to occur in state space formula-

tions can always be removed without changing the problem.

In the remainder of this chapter the relationship of the calculus of
variations solution to the state space soclution is shown for the low -

thrust problem only. The method of deleting )\m is illustrated.

5.4 Removal of a Superfluous Euler Variable

Although an Euler variable may be superfluous, a general method
of removing one is not obvious from the derivation in section 5.3. Con-
sider, however, the following derivation of the problem in section 5.3
which combines the compact notation with the classical approach. It

may be indicative of a general method.

Assume the system is described by physical rates which have the

form
s=gls a) (5-47)

where s is the state vector, a the control vector and g is a vector func-

tion of state and control.

Assume that the cost variable is some scalar function of the physi-

cal rates or some nonlinear function of the control.

S = h (s) (5-48)
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or .
S =h(a) (5-49)

where S is the cost integrand.

Further, allow the physical rates to be subjected to constraints.
Define the constrained variables as a vector function of the physical

rates or of the control. That is

y=ylg(s 2l (5-50)
A general functional, equivalent to those used in section 5. 3 is
F=5+aTg+y' Ty (5-51)

where A is the vector of Euler variables and where 2/_' is determined
in such a fashion that the constraint is satisfied. It is a vector equiva-

lent of the 'y' in section 5. 3.

Application of the usual variational technique produces the expanded

set of state equations, Euler equations and control equations.

s=g(s a) (5-47)
: 3 . .T 8 T oy \ L
—)\=(——+>\ % 4+, _Z> (5-52)
- 9s - ds 9s
3 . .T 8 'T 8y \L '
o=<_.+x % 4, _Z_) (5-53)
- da - da da

For the unrestricted case such that Z"=‘ O and using the familiar

definitionof the matrices A and B, that is

% - a (5-54)
os
% - B (5-55)
o2
then from (5-52) one obtains
AT--aTa (5-56)
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A solution to the set (5-53) to within an unknown scale factor, is

a=BT 2 (5-57)

That (5-57) is a solulion may be verified by expansion. The variational
equations of state and their adjoint set are

éé = A bs+Bbda (5-58)

j\= - AA (5-59)

Since the Euler equations (5-56) satisfy the adjoint relation as does

(5-59) a solution for (5-56) is obtained by choosing

Ng=1 (5-60)

Then
a T
Z‘.t = A : ﬁf (5-61)

Dropping the subscript t from (5-61) and substituting into (5-57) yields

a=8BT AT (5-62)

f

By partitioning A and lf it is apparent that deleting the seventh row
of A\, _/_\_ r7I‘, and deleting the unknown boundary value )me eliminates

the superfluous Euler variable from consideration. That is

a= 5T I:A*T : /\7] Ay (5-63)

In order to find the optimal trajectory it is only necessary to find
the final value of the six Euler variables. (Or, since the adjoint and
fundamental solutions, discussed in Chapter III, allow transformation
at will between one terminus and the other; the initial values of the

Euler variables may be used. )

By letting

v ={ " " (5-64)
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and deleting A7 and )\mf frecm (5-63), the expressicn yields

a-= BT AT v (5-65)

which is identical with the expression fer *he optimal confrel program
fcr guidance derived in Chapter 177, Thus bcth the Penfryagin principle
and the Euler variables give the same result when )tm 15 deleted. It 1s
shewr in Appendix C that along the cptimal fraje _tcry A 1s arull vec-
ter of BT ./\I thus equation (5-62) displiays the well krown and very
trcublescme singularity when evzluated zleng the cptimal trajectory.
This is the consequence of cptimality which has inst.gated the search
for new methods,including this cne. It is further sghcwn that Vs nct a
rull vectcr of BT f\.*T thus (5 65) car be used.

For the restricted VSI case the preceding arguments hold with y'
entering as 1n sectien 5. 3. The restricted VS csse 1s completely
determinate in the calculus c¢f variaticns using Breakwell s appreach
ard deleting )\ma The CS! case may zlsc be *rea‘ed 1n zn analcgous
fashicn except that the ccast phase can nct be uniquely determined.
This 15 due tc the so-called degereracy of the calculus of variaticns

for lirear op*imums

5.5 Scluricn by Direct Integraticon

There are two general apprcaches for firding an cptimal trajectory.
Descriptions of the first methcd are usually prefaced by: "If any non-
optimal sclutien can be fcund which satisfies the boundary cend:ticns,
then the solution can be mcved 1n the directicn of the optimal, etc. "
This approach 1s usually called z gradiert methcd. Tt 13 rot used in
this report because noncptimal sclutions carnet safisfy the Euler
equaticns, thus it would be difficult to relate any nonoptimal centra!
to *he form of equaticn (5-65)

The second general apprcach is often described as "'sclvirg the

wrong problem 1n an cpfimal manner. "

This 18 the approzach uzed in
Chapter VI. An initial guess is made for the initial Euler variables

v, then the state equaticns, adjoint set and Euler variables are integraf-
ed to the final time. The resulung final values are ccmpared with the

desired final values and a new estimate of V is ccmputed. The process
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is repeated until the boundary values are satisfied. The fact that the
gravitational field is conservative and well behaved aids materially in

improving the speed of convergence.

5.6 Properties of Optimal Trajectories

It is possible to gain considerable insight into the properties of
propellant-optimal trajectories without resorting to machine computa-
tion. Such insight aids materially in working with the mathematics of

the transfer process and often leads to new methods of approach.

For this purpose, consider the problem of transferring between two
planets with minimum propellant expenditure as one of changing energy

and angular momentum in the most efficient manner.

From the energy integral of orbital mechanics one may write the

energy per unit mass of the vehicle as

2
ezl - £ (5-67)
2 r
and the energy time derivative as
e=vv +H ¢ (5-68)
r

Equation (5-68) may be written in the vector notation and reduced with
help of the equations of motion to

é=vla (5-69)

Equation (5-69) represents the rate of energy change imparted to the
vehicle. The rate of energy expenditure by the propulsion system is
the power

2 - T

m ¢ mc- ¢C (5-70)

S N —

where m is considered as the mass flow rate per unit mass and c has

the opposite sense of a.
Similarly a functional expression for angular momentum is
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h=rXy+rxy (5-72)
where the notation signifies the vector product cf r and v. Equaticn

(5-72) 1is reduced with help of the equations of motions to

h=rXa (5-73)

Using equations (5-69) and {5-73) the problem is formulated as:

t
f
Minimize s= [ -mat (5-74)
0
subject tc the constraints
tf .
Ae= [ v i ad {5-75)
0
j§:
Ah= [ rxadt (5-76)
S a

lus velocity and positicn constraints and where Ae and Ah are known
) p i

quantities.

The above formulaticn is not computationally desirable; however

it provides a basis for scme significant qualitative arguments.

It is apparent from equation (5 69) that with a fixed in magnitude
the vehicle changes energy most rapidly, thus mecst efficiently, when
v is large and v and a are cclinear. From the energy equation (5-67)
one observes that in a central force field the velocity magnitude goes
inversely with the square rcct of the radius. From equation (5-73) it
is apparent that h changes most rapidly wher r is large and orthogonal

to a.

From the preceding cbservations one may deduce that the trajec-
tory which minimizes the propellant expenditure will tend to keep the
exhaust velocity vector aligned with the large velocity vector when the
vehicle is deep in a gravitaticnal field so that energy is changed most
efficiently. It will also tend to rotate the angular momentum vector
when the vehicle is far out in the gravitational field so that the vector

r has large magnitude. Where these requiremerts are incompatable

73



with boundary conditions, the optimum solution should resolve the

conflict in favor of propellant conservation.

The trajectories which have been generated numerically in this
thesis all appear to satisfy these precepts in so far as boundary con-
ditions permit. The increase in specific impulse which is character-
istic of variable thrust rockets as they traverse the center portion of
the heliocentric phase is due to the acceleration vector becoming orthog-
onal to the velocity vector. Likewise the coast phase for a thrust-
limited rocket occurs when the acceleration vector rotates through

the orthogonal orientation.

With the qualitative arguments of this section, it is possible to
sketch a reasonable approximation to a low-thrust optimum trajectory

without resorting to machine computation.
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CHAPTER VI

COMPUTATIONAL PROCEDURE FOR TRAJECTORIES

6. 1 Summary of Chapter VI

Details of a procedure for using the guidance equaticn as the basis
for trajectory computations are set forth in this chapter. Specifically,
the differential equations to be integrated and the procedure for cor-

recting initial conditions on the Euler equations are presented.

6.2 General Remarks

In Chapter V the fundamental prcblem of selecting initial (or final)
conditions on the Euler variables is introduced. Since the acceleration
program is an explicit function of the Euler variables it is necessary to
make a first estimate of the Euler initial conditions in crder to start
the iteration. This estimate will usually be a gross error under the
best of circumstances, thus it 1s desirable to chocse a very simple
estimate such as the null vector or a unit vector. Because of this, the
procedure we seek must be strongly convergent and independent of the

error in the first iteration attempt.

In any iterative procedure the speed of convergence 1s directly
dependent upon the validity of assuming that certain quantities do not
change from one iteration tc the next. In the preceding chapters it was
explicitly assumed that the miss vector at the terminal point was de-
pendent only upon a change in the initial Euler vector and that A and
B were invariant for neighboring trajectories. For small perturbations
around a reference trajectery such an assumption is valid. However
for the large perturbations expected in trajectory computation A and
B are not invariant. The change of these quantities from one iteration
to the next and the change of other second order quantities will deter-

mine the speed of convergence of the procedure.
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‘6.3 The Correction Procedure

From Chapter III one may write the optimal acceleration program
as a scalar times a matrix function of the adjoint set and the initiali-

zation vector.

2° = ,yo BT /\->:<T KO (6-1)

where Y is the scalar switching function derived from the limiting con-
dition on acceleration, B is the seven by three matrix of partial deriva-
tives, Bg/f)g, A * is the six by seven reduced adjoint set and V is the

six by one initialization vector.

In order to simplify the notation in certain equations to follow,
Euler variables will be used interchangeably with the matrix notation.
Recall from Chapter V that

A, =BT AR (6-2)

and

A 7oA (6-3)

The objective of the iterative search for the optimal acceleration
program is to find the vector Ko which causes the six component miss

vector, §, to approach the null vector to some desired accuracy. Thus

Yn=VY,q + Ap (6-4)

and we desire that

- ,,0 -
L (6-5)

for n as small as possible, where n is the iteration number.
The miss vector, £, may be written as the difference in final state
which results when a nonoptimal acceleration program, a, is used in

place of 30. Define
t

f ,
n=J A*Badt=Mp (6-6)
0
t
and f
-¢= [ AxB@°-a)at (6-8)
0
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then using (6-1) and (6-8)
te
g fA*BBT AT Ay ) at (6-9)
0

Equation (6-9) implicitly assumes that A and B are invariant functions
of time and thus ceonstant from one iteration to the next. The assump-

tion permits adequate convergence and is used throughout.

In order to provide for the discontinuities which occur in certain
variables at the beginning and end of restricted thrust regions, it is

convenient te write equation (6-9) as

J-1 5 ti+1
gy 2 fABBTA T yuat Ay (6-10)
=0 oy

1

where j is the number of distinct phases cof the trajectory Expanding

(6-10) according to Leibniz's rule yields

j-1 tiv1
T
__g_z Z f (_/\_*-‘:BBT_/\_’-"T‘)/+A*‘BBTA’5""K§Z-)dt

1=0 4 8_1{

— ti+1 o, (6-11)

+ A*BB A* yv —- 1 Ay
%y
(k = i, i+1)

Since y is the discontinuous switching parameter. the time at which a

discontinuity occurs, t, and 1ts derivative with respect to ¥ may be eval-

k,

uated froem the derivation in Chapter 1V, Rewriting equation (3-76) we

obtain aq

ot oy
ko= (6-12)

oy aq

- ot

By comparing (3-52) and (6-2) observe that

a=| (6-13)
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Using (6-2) and (6-3) and taking the derivative, yields

Bt AT BT AxT
S (6-14)
5 AT
- ~v =r

The term 8y /8V may be evaluated from the definitions in Chapter III,

which are written here in more convenient form.

a
y =min |1; -2 —21 (VSI) (6-15)
m |y |
-V
- 2a_ N
0 if -2 > 1
x|
Yy =< > (CSI)
%o 1 ;% 1o
(™ x| ™oy | )
S -V -V (6-16)

Therefore by differentiating and applying equation (6-2)

ra AL BTAXT w
o =V .
= ' '3 ify# 0,1
A
9y .4 ~V >
ov 0 ify =0, 1
4 ) (6-17)
From equation (6-6) let us make the following definitions for n and M.
n =y A*BBIA*T, (6-19)
=My (6-20)

Using (6-11) and (6-14) through (6-20) one obtains

tf y'z'lz‘lT 77 ﬁT tcut off - €
-k [ (M- —/—]) asr - —F— | Ay
0 (2) yiag x|
m tcut on + €
(6-21)
where we let ' 0 v=1,0
Y = (6-22)
y v#1,0
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The final term in equation (6-21) is evaluated at points such that y is

not zero, i.e. € before cut-off and € after cut-on.

Define
t T T tott
g ynn n1 oo
M™ = s | dt - T (6-23)
0 ( ) YIAD X
- v =r
m t
on
then
Ay =M lE (6-24)
and from (6-4), (6-5) and (6-6)
UAI VR B VR 6-25)
Thus the correction prccedure to be empleyed is
v.o v, Mt 13 (6-26)

6.4 Quantities to be Computed

In order to cbtain the quanti*tzes M* zrd & of equation (6-26) it is
recessary to integrate the state varizbles, the adjoirt set, the vector
]1" and the matrix M“ In add:ticn 1t is ccrivenient ‘¢ integrate the Euler
variables rather than compute them from other quantities,

From the discussicn in Chapter V 1t may ke rcted that the adjcint

T

equations are to be in‘egrated backwsrd i *ime frcm /\.f = 1. However,
it 1s easily shown tha* :rtegrating backwards in *1me 1s an unnecessary
complication. Ir Chapter III the variaticrz! equaticns of state and their

adjoint set were sclved together tc produce
't
Nodsp= A, bs + tf A B &a at (6-27)

and ‘A'f was arbitrarily chosen equal tc the identity in the guidance
problem. For computing the entire trajectery fromt = 0 tot = 1. cne

may write an equivalent equation

t
¢
AT E=NTes + [N BB N A ) a
| 0 (6-28)
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where./\.f< has both the last row and last column of /A deleted in order
to be compatable with § and where 650 = O since the problem starts
from a given state. Since the initial condition on A is still arbitrary
it is convenient to choose _/\_O = I so that backward integration is not

necessary. Thus in place of (6-24) use
-ATTE= M Ay (6-29)
A =1 (6-30)

An interpretation of this procedure is as follows. An arbiirary accel-
eration program is selected (i. e. estimate v) ; then the state and ad-
joint equations are integrated forward resulting in a miss in position
and velocity, - £. Since the acceleration program satisfies the condi-

tions for an optimum to whatever terminal point it reached, namely

r

({v T>+ é) , the propellant required to reach that point is minimum.

—T

Thus we are assured that when £ = O, m_—em also. It is un-
= = f f(max)

important, therefore, that the ''miss'' in m, is unknown, since if the

procedure converges on the physical boundary conditions it does so via

a propellant-optimal trajectory.

The term —A:* & merely reflects the physical miss back to the
initial state and compensates for the procedure of integrating the ad-
joint set forward in time instead of backward in time. In the machine
procedure it is convenient to use equation (6-31) in lieu of (6-26).

- _ sk=-1 ek _
vio=v,  -MTATTE (6-31)

The full set of equations that must be integrated are listed with the

appropriate initial conditions.

s=g(s a) (6-32)
s(0) =s (6-33)
A=-Aa (6-34)
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A =1 (6-35)

o}
A=-ata (6-36)
A(O)=vp (6-37)
VST
e o i y ﬂn
M* =y A*BBIAT . (6 -38)
o]
()
M* (0) = O (6-39)
=My (6-40)
‘where M is the first term of M*
M (0) = O (6-41)
n 0y = O (6-42)

An information flow chart and the FORTRAN program used to mecha-

nize the precedingequations are included in Appendix G.

The procedure worked satisfactorily, converging to very small
values for £ with surprisingly few iteraticns. The initial estimates

for v that were used are

v=0 (VSI trajectories) (6-43)

(CSI trajectories) (6-44)

|
1}

o
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CHAPTER VII

A NUMERICAL EXAMPLL

7.1 Summary of Chapter VII

In this chapter a sample heliocentric transfer from Earth to Mars
is described. The selected mission was programmed for machine com-
putation to test the theories developed in the thesis. Numerical results

from the test are presented and discussed.

7.2 General Remarks

The linear guidance theory of Chapter III assumes that an optimal
reference trajectory is known. In order to test the guidance theory,
therefore, it is necessary to compute an optimal reference trajectory.
In Chapter V the discussion of a superfluous Euler equation shows that
the solution of the linear guidance equation satisfies the necessary
conditions for an optimum. Thus in theory, iterative solution of the
guidance equation will generate the desired optimal reference. If the
technique converges the linear guidance theory is validated. If the
procedure converges rapidly then the theory also provides a simple,

fast and effective way of generating low-thrust trajectories.

The procedure was found to converge rapidly for both CSI and VSI

vehicles.

7.3 The Mission

The mission selected was a 150-day heliocentric transfer from
Earth to Mars. Flight time of 150 days was chosen in order that
numerical results could be compared with a 162-day coplanar trajectory
generated by Friedlanderlz. The period chosen corresponds to the

37 . The depar-

favorable opposition of Mars during the summer of 1971
ture date, from a position on Earth's sphere of influence, is J. D. 244-
1090. 5. Arrival at Mars sphere of influence is 150 days later. The

vehicle is assumed to have Earth's orbital velocity at departure and to

match the Martian velocity at arrival. These velocity conditions are
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not optimal for the entire mission, i.e. escape, transfer, capture,
however the author wanted to test out-of-plane components of the state
vector. The use of planetary velocities for initial and final velocity

permitted this.

Both CSI and VSI modes of control were tested. The assumption
was made that a space vehicle of given size and power could be con-
trolled under either mode of operation, CSI or VSI. Thus two complete
sets of data were generated which differ only in mode of control. In
addition the adjoint sets for an optimal thrust program and an optimal
acceleration program were generated for each control mode. The pur-
pose of having both types of adjoint functions is to permit all engine
anomalies of interest to be studied. The subtle difference between the

two sets of adjoint functions is discussed in Appendix C.

7.4 Computational Coordinates

The coordinate system used for the mission analysis is a simple
but effective system which is defined by the transfer plane. The trans-
fer plane is the plane which passes through the sun and contains the
desired departure and arrival points. The x axis passes through the
launch point, the z axis is normal to the plane in the northerly direction,
and the y axis completes the right hand triad. A procedure for trans-
forming ephemeris data into computational coordinates is derived in

Appendix F. Figure 7-a illustrates the geometry of the transfer.

7.5 Engine Selection

Engine sizing for the sample mission was computed on the basis of
the mass distribution for maximum payload derived in Chapter II. That
is

Bopt p

_otopt I (7-1)
a mo a

A trial trajectory for a mass independent VSI rocket was computed to

obtain a first approximation for J. The value for the one-way transfer
was scaled up by a factor of 4 to provide a more realistic value for a
round trip mission; also to insure that mass would never be reduced to

zero during computer tests. A value for a of 10 kg/kw was selected as
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being reasonable, though perhaps unattainable in less than a decade.

‘The resulting value for exhaust power is

P -0 0242 KW (7-2)
Mg kg
This value for power was used for both modes of control, (VSI) and
(CSI).

The VSI trajectory was generated and the resulting value for initial
acceleration, 1. 57 X 10_4 g, was used in the field-free space equa-
tions of Appendix A to obtain an optimum initial acceleration (thrust
level) for the CSI vehicle. A value of 1.2X 107" g_was used. This
value of optimum initial acceleration, based on field-free space, is in
surprisingly good agreement with the more rigorous computations of

Melbourne and Sauer.

7.6 Numerical Results

The computer output data for the final iteration of each mode of
control are reproduced as Appendix H. In addition, plots of several
interesting output quantities are presented as Figures H-a through H-r.
The data samples and the plots are strictly valid only for the particular
cases they represent, however they are indicative of the order of mag-
nitudes applicable to many one-way missions in the solar system. The
adjoint functions, for example, (Figures H-d through H-r) are in good
agreement with the values obtained by Friedlander for a coplanar trans-

fer.

It is interesting to observe that the acceleration magnitude for a
VSI vehicle, Figure H-a, is approximately a linear function of time and
almost symmetric with respect to the midpoint. Comparison with the
field-free space acceleration program, Figure 2-c, which 1s linear and
symmetric, confirms that to first order analysis of VSI trajectories in

field-free space may be applied to the gravitational field.

This result only confirms the work of other investigators and was
anticipated. The analysis for CSI vehicles in field-free space is not
as straightforward and requires a large amount of work. The field-

free space derivations in Appendix A result in a value for the optimum
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CSI thrust level which is in gocd agreement with the computer results
of Melbourne and Sauer. The value obtained for the final mass ratio
is larger than the value which results from computer studies in the
gravitational field. Referring to Figure 2-d, observe that the point
representing the CSI transfer falls slightly below the curve represent-
ing field-free space prediction. This is satisfying in that the penalty
for CSI control is less than expected. However, before concluding that
field-free space is always a good predictor for CSI transfers, it will
be necessary to test a large number of additional points to determine
if agreement is sufficiently good to warrant the computational effort.
The limitation of time has prevented the author from undertaking such

a study.

In Figures H-b and H-c the transfer plane components of position
and acceleration are plotted. The out-of-plane components are quite
small and are not considered further. A surprising result is that the
maximum difference between the physical paths of the VSI and CSI
trajectories is less than 0. 01 A.u. The large difference in the form
of the acceleration programs, Figure H-a, leads one to anticipate

rather large trajectory differences. This is found not to be the case.

A very important characteristic of continuous-thrust rockets is
shown in Figure H-p. This is the sensitivity of position error to mass
change when the thrust program is specified. The y component of
position at arrival time is subject to an error of 0. 81 X 106 km for
1% variation in launch weight. For a one-ton vehicle this is approxi-
mately equivalent to a 25,000 mile terminal error for each pound of
launch weight variation. The large sensitivity to mass changes
emphasizes the requirement for accelerometers with sensitivities of
the order of 10_5 g. Such instruments will be extremely important in

the navigation of low-thrust spacecrarft.

7.7 Convergence of the Computation Routine

The results discussed in the preceding section, although interest-
ing, are only by-products of the experiment devised to test linear
guidance theory as a computational method for trajectories. Conver-

gence of the routine is crucial to the thesis since the linear theory
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purports to null the miss vector for small variations in state. Appli-
cation of the guidance theory to the launch state, i. e. trajectory com-
putation, provides the most severe test of guidance. The results of
this test are plotted in Figure 7-b. The criterion chosen as indicative
of convergence is the RMS value cf miss vector length. In order to be
dimensionally compatable, the velocity components are multiplied by
flight time, 150 days. Therefore the ordinate in Figure 7-b is the RMS
3

value in A.u., of " _g . The abscissa is the iteration number.
f2v

Several cases were tested; the three plotted are indicative of all tests.

The first one or two points in each case represent the result of
estimating initial values for the Euler variables, v, and were widely

scattered. These points are not plctied.

The unrestricted VSI trajectory converges very rapidly; reducing
I él by approximately two orders of magnitude each iteration. Con-
vergence is very smocth. The CSI cases converge less rapidly and
less smoothly, but satisfactorily. In general, as the thrust limit, as
is reduced, convergence is slower. If, for example, a, is reduced €
below the value which permits no coast period, the procedure will not
converge. This physically corresponds to a vehicle 'in extremis"
such that insufficient thrust is available to complete the mission. The
result also indicates that reserve power must be available for guidance.
A CSI vehicle which is beyond the coast phase cannot correct for state
error in all six components of £ unless reserve power is available. If
reserve power is not available, guidance must be based on a formula-

tion such as Pfeiffer'sl45 which gives the minimum miss.

It should be reported that the CSI miss vector magnitude entered
a small limit cycle around the target prior to addition of the term
8tk/32v This term is derived in section 6. 3. Prediction of the switch-
ing time by including the above derivative is necessary to obtain the

desired accuracy.

It may be desirable to include an additional term in the procedure

to smooth convergence of the CSI routine. The term 8m/ oV, evaluated
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at the switch points, will probably be sufficient to do this. Computer
‘tests were completed before the significance of this term was recog-

nized and time limitation precluded retesting of the procedure.

The accuracy obtained from the tests is significant. The routine
was stopped after a predetermined number of iterations to conserve
computer time, however for VSI trajectories, the largest error in a
component of position was of the order of one mile. The largest error
in velocity was of the order of 20 feetper hour. These values are given
in the computer results in Appendix H. The computer was stopped
before attaining this accuracy for CSI trajectories, however the con-
vergence plots in Figure 7-b indicate such accuracy is attainable with

a sufficient number of iterations.

89




CHAPTER VIII

SUMMARY AND CONCLUSIONS

8.1 Summary

In this report the cbjective has been to justify the argument: '"There
exists a linear method which prcduces a propellant-optimal control pro-
gram in a noniterative form for guidance of low-thrust space vehicles
and which provides a simple, rapidly converging iterative technique for

computing propellant-optimal trajectories. "'

In pursuit of this objective it is necessary. in Chapter II, to develop
the parameters which characterize low-thrust vehicles. Due to 'state
of the art' restricticns con variable-specific-impulse (VSI) machines,
the parameters fcr constant-specific-impuise (CSI) vehicles are devel-

oped in additicn to the idealized mode of centrel.

As an adjunct of Chapter II, the equations for field-free space appli-
cation of CSI contrel are derived in A;;pendix A This derivation is
used to test the validity of approximating CSI transfers in the solar
system by field-free space analysis, as has previcusly been done for

constant-power vehicles.

The parametric derivaticns previde a starting point for investiga-
ting propellant-cptimal guidance of low-thrust vehicles. For this study
the vehicle 1s characterized by 1ts "'state'’. The state 1s represented by
a vector consisting of three components of positicn, three components
of velocity and the vehicle mass. The differentizl equaticn of state is
linearized by considering variaticns of the state vector with respect to
an optimal reference trajectory. Auxiliaryfunctions, called adjoint
variables, are used to solve the linearized differential equation. The
solution to the expanded set of equations is called the state transition
equation or fundamental guidance equation and serves as the basis of

the guidance theory.
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The linear guidance theory is developed in Chapter III and applied
to both modes of vehicle control. The solution for an unrestricted VSI
vehicle is derived using the calculus of variations and then using Pontry-
agin's maximum principle to prove that both methods lead to the same
result. The CSI problem is then solved using the Hamiltonian. The
crucial step in either approach is deletion of the adjoint functions asso-
ciated with the mass rate equation. Deletion of this set of functions to
form a reduced adjoint set permits a solution to be obtained directly.
Otherwise, the system is indeterminate due to a singular matrix. Proof
of the singularity and justification for deleting the one set of adjoint

functions are treated in Appendix C and Chapter V respectively.

As an adjunct of Chapter III, explanation of the adjoint relationship
and derivation of Pontryagin's principle are presented in Appendices B
and D respectively. Also in Appendix D is a discussion of optimality
criteria as derived from the Pontryagin principle and from the calculus
of variations. Important properties of the state transition equation are

presented and discussed in Appendix C.

The problem of estimating the vehicle state is studied in Chapter IV
as a problem in navigation. The method of redundant measurements
studied by Battin, Stern and Potter is extended to include continuous
measurement of low-thrust engine performance. Based on the concept
of filtering redundant data with a biased filter, two methods are derived
for predicting future state. One is a simple method for short term
prediction; the other is more complex but also more accurate for long
range prediction. The effect of omitting engine measurements is dis-

cussed.

The problem of computing optimal reference trajectories is dis-
cussed in Chapters V and VI. By first deriving the Euler equations with
the calculus of variations and then demonstrating that the set contains
a superfluous Euler equation, the linear guidance theory is shown to be
useful for computing optimal reference trajectories. The superfluous

Euler variable is a result of optimizing a state variable.
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To provide a comparison of linear guidance with better known com-

putation techniques, the steepest ascent formulation of the trajectory

problem is presented in Appendix E.

Chapter VII describes the sample mission that was simulated on a

digital computer to test the guidance equation as a computational device

for trajectories. The results of the test are discussed.

8.2 Conclusions

On the basis of the analysis and the subsequent simulation, the

following conclusions were reached.

1.

The linear guidance method is applicable to guidance of low-

thrust vehicles in interplanetary flight.

The rapid convergence of the test procedure proves the method

to be applicable for computing propellant-optimal trajectories.
For CSI transfers, reserve power for guidance is necessary.

Mathematical descriptions of many optimizaticn problems
which contain a state variable in the cost, will produce a
superfluous Euler variable when the classical calculus of
variations is used. Deletion of this Euler variable removes
several difficulties associated with solving optimal control

problems.

Sightings on celestial bodies at discrete intervals may be
combined with continuous measurements of engine perform-

ance to estimate the state cf the vehicle.

The uncertainty in state is increased if engine measurements

are omitted.

Field-free space analysis of CSI transfers provide a reason-
able approximation for the results in a gravitational field,
however additional study is needed to ascertain the general

applicability of the method.

8.3 Contributions of the Investigation

The items in the report which are believed to be novel are dis-

cussed in this section.
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Derivation of the propellant-optimal control law by the method of
Chapter III is thought to be original. The crucial step in the derivation
is the formation of a reduced adjoint set. This permits inversion of a
matrix which otherwise would be singular. Other approaches to this
problem usually require the addition of artificial constraints or weight-
ing matrices which remove the singularity but also change the char-
acter of the cost function. The method of this thesis preserves the

cost function and produces the optimal control directly.

The explanation of the singularity on the basis of a superfluous
Euler variable is thought to be novel. The simplification resulting
from deletion of the extra variable, by using the reduced adjoint set,
may resolve many difficulties associated with optimal control problems

other than the one in this report.

The equations which combine the celestial sights and the continuous
measurements of engine performance are not believed to have been pre-

viously derived.

Finally, the method of generating the optimal trajectory is believed
to be simpler than methods previously used. The method results from
linearizing the state equations but using the complete nonlinear cost

function.

8.4 Recommendations for Further Study

The current research has revealed some areas where additional
work might produce fruitful results and other areas where information

is lacking with respect to low-thrust transfers.

The computational method needs to be expanded to the many body
problem. Preliminary work does not show any monumental difficulties
associated with such an effort. The primary problem is to include an

ephemeris in the routine.

It appears possible to use the method as a search routine for finding
families of trajectories, with the goal of defining optimal launch times

for low-thrust missions.
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A study of methods to join different segments of an optimal tra-

jectory should be interesting. In particular the idea of making only

.one coordinate change between launch and capture is appealing.

Research to define rigorously the concept of superfluous Euler
variables is needed. It is doubtful that the singularities in all optimi-
zation problems can be removed by the method of this thesis, but per-

haps some can. Knowledge of the general applicability is needed.

When data on the reliability of low-thrust power plants and thrusters
is available, a study of the effects of engine anomalies on the probability
of mission success should be made.

"critical' plane associated with

A study of VTA guidance using the
ballistic guidance is neededSI. This concept is difficult to visualize
in the six dimensional phase space associated with the equations of
motion. However, the existence of a concept analogous to the "critical

plane' idea might provide additional insight to the guidance problem.
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APPENDIX A

TRANSFERS IN FIELD-FREE SPACE

A. 1 Introduction

In this appendix the equations for point-to-point transfer of low-
thrust rockets in field-free space (FFS) are presented. The optimal
transfer problem for a constant power VSI rocket is a straight forward
application of the calculus of variations. Examples of this transfer are
found frequently in the literature. It is reproduced here for complete-

ness.

Point-to-point transfer of a CSI rocket is more difficult to compute.
The equations are derived in this appendix. Results of the derivation
were applied to the sample mission in the thesis to ascertain the validity
of using FFS predictions in the gravitation field. FFS analysis is found
to furnish a reasonable approximation for CSI transfers, however the

analysis is quite tedious.

The author is indebted to Mr. Neal Carlson for checking the deriva-

tion and for suggesting different methods of approach.

A. 2 Constant Power Transfer

Assume that in FFS we desire to traverse the distance L in the
time T such that the vehicle begins and ends at rest and such that the

acceleration integral is a minimum.

That is
T 32
minimize J = =- dt (A-1)
0 2
T
subject to J vdt=L (A-2)
0
and the boundary conditions
v(0)=0
v (T)- (A-3)
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Forming a functional F, one obtains

T . T
V2
F=[X dt+7(L- [ vadt) (A-4)
0 2 0
Direct application of the variational technique produces the optimal
velocity schedule from which the acceleration is easily derived.

as e (1-2) (A-5)

T T

Evaluating the acceleration integral, obtain
J = — (A-6)

From equation (A-5) the optimal initial acceleration is

6L

a S —
T

e (A-7)

A plot of equation (A-5) is presented in the discussion of Chapter II as

Figure 2-c.

A. 3 Constant-Specific-Impulse Transfer

The well known equations for a conventional rocket must be inte-

grated in the analysis of a CSI transfer. That is
v = ¢ Iln MR (A-8)

Since the variational approach is degenerate for this type of optimiza-
tion problem, ‘we shall simply apply the known result from the Hamil-
tonian approach of Chapter III, that thrust is either full on or full off fer
CSI vehicles in a linear field. Integration of equation (A-8) is over the

initial and final thrusting periods with a coast in between. That is

t1 T

L=fvydt+ [ v()dt+v(t) (t, -t (A-9)
0 t5
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subject to the boundary conditions (A-3). This rather lengthy compu-

tation reduces to

1 2
L=c (t2 - tl) In (————) + aotl (A-10)
1 - mt1

where ao in the initial acceleration and m is the normalized flow rate

(i.e. m_ = 1). Some additional algebraic manipulation allows (A-10)

to be cast in the form

2
= 1)

(A-11)

mL —(z.nT+m?-1)1nml+(1-m
c

where

m, = 1- mt, (A-12)

From the work of Chapter II observe that for m a positive number

a_ = mc (A-13
(o]
p =+ mc? (A-14)
2
Thus 9
. ao
m = (A-15)
2p
c=2p (A-16)
a
o

Equation (A-11) may now be written in terms of initial acceleration,

power, mass, and the dimensions of the problem, L and T.

a3 L a2 T2 9 9

02 = - ° tmi -1 Inm, +(1-m)

4p 2p (A-17)
In the VSI case ao was %— . Let the CSI initial acceleration be an

T
unknown multiple of that value
a = x> (A-18)
T
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Further, define a parameter R.

2
r= 184 (A-19)
pT
Substituting (A-18) and (A-19) into (A-17) one obtains
% R2x3= -(Rx2+m?- )1nm1+(1 —ml)2
(A-20)

From the condition that the velocity change must be the same for both
thrusting intervals if boundary conditions are satisfied, the final mass

ratio is

) (A-21)

Therefore if m, is a maximum, mass ratio is a minimum and likewise

for the acceleration integral.
om

Using equation (A-20), solve for x such that L 0. The result is
ox
aml
=0 (A-22)
0x
when
Rx(sRx+2Inm)) =0 (A-23)

x = 0 is a trivial solution and the desired solution is

In m (A-24)

x = = In MR (A-25)
R
If equation (A-24) is substituted into (A-20) the result 1s

B mmpP s -m?) mmpra-md=o

1)
3R (A-26)

The transcendental equation (A-26) is the relation between m, and R

for optimal CSI operations in field-free space. The optimum initial
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acceleration is given by (A-24) or (A-25). Equation (A-26) is plotted
in Figure 2-d. It is observed that CSI control always uses more pro-

pellant than VSI control. Also plotted in Figure 2-d is the CSI curve

for a = %‘— (i.e. x =1). This value of a, is considerably more expen-

T

sive than a transfer witha_ = a . Figure A-a contains plots of
o o (opt)

the required coast time for CSI control. These are obtained by solving

equation (A-10) for (t, - t,)/ T in terms of m, and R. Again the work
q 2 1/ g

1
involved is substantial.

Observe that for the case where

m, =1-¢ (A-217)

1

where € is a small quantity, equation (A-27) may be substituted into
(A-26) and the resulting expression solved for my by neglecting higher

order terms.

1= 1-— (A-28)
16
By approximating 1ln m, as
In m; = -€ (L+1/2€¢ +""""" ) (A-29)
one obtains
Xopt = 3/4 (A-30)

Therefore, for transfers such that the propellant consumption is
small with respect to the total initial mass, the optimum initial acceler-
ation for CSI vehicles is approximately three-fourths of the correspond-

ing optimum initial acceleration for VSI vehicles.
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APPENDIX B

ADJOINT SYSTEM OF DIFFERENTIAL EQUATIONS

B. 1 Introduction

The purpose of this appendix is to review briefly the concept of the
adjoint system of differential equations and to illustrate its use in a
simple guidance problem. Although the concept is not new, it has not
been used as a standard engineering technique in guidance and control
problems until very recently. For solution of the two-point boundary
value problem which occurs in the navigation and guidance of space-

craft however, the method of adjoints is a particularly useful tool.

The development in this section is not intended to be rigorous and
exhaustive but merely illustrative of the method used throughout the
thesis. The material is taken primarily from the lecture notes of
Professor Frank D. Faulkner of the United States Naval Postgraduate
School.

B. 2 Method of Adjoints

Consider the following ordinary scalar differential equation,

X+ 3x + 2x = () (B-1)
which may be used to define the operator
2
Lix) = (S5+ 3% 2y x = 1t (B-2)
at?  at

where f(t) is an arbitrary but known function. In a manner closely re-
lated to the method of variation of parameters, form the integral
T T
J =Of AL(x) dt = Of Af(t) dt (B-3)

where A is an unspecified function which will be chosen later to satisfy
certain boundary conditions in addition to a functional relationship. In-
tegrating equation (B-3) by parts to eliminate the derivative of x from

the integrand, one obtains
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T T
=(.A.§c+3j\x- j\,x) |O+f x()'\_Sj\+2j\)dt

0 (B-4)
If _A_is chosen such that it satisfies
2
LF(A) = (L5 - 22 +2) Ao (B-5)
dt dt

then the definite integral J is a function only of the first term on the
right side of equation (B-4). The operation of integrating by parts to
eliminate the dependent variable from the integrand defines the adjoint
operator L*, If L* = L the system is said to be self adjoint and has
some very useful properties. However, these are of no concern at the

moment.
A general solution to the adjoint equation (B-5) is
A= Cy et + C, 2t (B-6)
Suppose that the desired quantities are x(T) and x(T) and that x(0) and

x(0) (i. e. two constants of integration associated with the original dif-

ferential equation) are known. Equation (B-4) may be rewritten as

T
[Ax+BA-N)xl=[ Ax+BA- A)xl + [ Afie
t=T t=0 0
(B-7)
If one specifies that
A(T) =1 (B-8)
3 A(T) - A(T) =0 (B-9)
then equation (B-7) gives for );(T)
T .
= [ /\_x + (BN - j\_) x] + f Af(t) at (B-10)
t=0 0

The constants in equation (B-6) may be evaluated from the boundary
conditions of the adjoint variable, equations (B-8) and (B-9). Designate
this solution A 1" By performing the algebra one obtains

A =902 (t=T) _ t-T

. (B-11)

102




Equation (B-10) may now be solved explicitly for );(T).

x(T) = (2¢2T - e™T) x, + 2(e”

T
e Tyxy+ [ At at
0 (B-12)
To obtain x(T) it is necessary to specify different boundary condi-

tions for A.. Designate the solution satisfying these conditions as A 9

Az(T) =0 (B-13)
3/\.2(T) - ./'\_2(T) =1 (B-14)

By solving equation (B-6) subject to the boundary conditions of (B-13)
and (B-14) one obtains

_ t-T  _2(t-T)
/\.2 = e e (B-15)
Inserting this result into equation (B-7) yields for x(T)
T
x(T) = (emT - e_2T) xg + (2e-T - e"'ZT) xg + f/\zf(t) dt
0 (B-16)

The preceding development illustrates the general technique to be
used. However, in order to more closely approach the formulations
used in the thesis, it is convenient to write the basic second order dif-

ferential equation, (B-1), as two first order equations.
X=y (B-17)
y = - 3y - 2x + {(t) (B-18)

Associate with the two equations two sets of adjoint functions A i1 and
/\'12 where the subscripts 1 and 2 refer to the associated equation and
the subscript i will refer to the boundary conditions which will eventually
be assigned to the A's. The integral J may now be formed.

T T

J =Of A'il (X -y) +Ai2(}"+ 3y + 2x) dt =Of Aizf(t) dt

(B-19)
Integrate by parts to obtain
T T .
T2 (Agpxr A9 g 'Of x (Nyp -2 Aty (Agy -3 A+ Ay at
(B-20)
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In order to eliminate the integral term it is clear that the adjoint vari-

ables must satisfy the relationship

Ajg-2N,570 (B-21)
j\-iz “3Apt A =0 (B-22)

By reducing the two equations to one second order equation and solving

subject to the boundary conditions

A =1 (B-23)

_/\.12 (T) =0 (B-24)
and

A, (@ =0 (B-25)

A, (T) =1 (B-26)

it is apparent that the adjoint system of equations (B-21) and (B-22) is

identical with that obtained by the first formulation of the problem.

In general, if any set of first order differential equations may be

written in the form:

Y () ( )
X4 Xy fl(t)
P S O S (B-27)
\ Xn J \Xn / Lfn(t)/
or equivalently
x - Ax = f(t) (B-28)

Then there exists a set of adjoint functions satisfying the relations

J\ + AA =0, (B-29)
AT) =1 (B-30)
such that
T
x(T) = At xity) + [ AL at (B-31)
t
1
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where A (t) is the n by n matrix of adjoint functions, A is the n by n
matrix of coefficients in the original set of differential equations and

In is the n by nidentity matrix.

Unfortunately, in most problems of interest the adjoint functions
cannot be obtained in closed form and it is necessary to integrate the
n2 equations of (B-29) backwards in time from T to ty numerically,

using (B-30) as the initial condition.

B. 3 Use of the Adjoint Method in a Simple Guidance Problem

In this section the set of adjoint functions for a power-limited
space vehicle in two dimensional field-free space will be developed
analytically. The purpose is twofold: 1) to further illustrate the tech-
nique of section B. 2, and 2) to provide a simple analytic example for
use in illustrating the guidance methods expounded in the body of the

thesis.

The fundamental guidance equation for thrust-limited vehicles has
been defined in earlier sections as
by

6s,= N b3, + [ ABsfat (B-32)
t

=f
For an actual interplanetary transfer the A matrix will be obtained
simultaneously with the desired trajectory. In any event, if the tra-
jectory is known the adjoint functions are also known or may be easily
determined. To illustrate this assume a transfer in field-free space
such that motion is along the positive x axis commencing from rest at

the origin at t = 0. At t = t, the thrust is reversed to effect rendezvous

R

with point x, at time t = tf. See Figure B-a.

f
Ay
t=0 t=tg t=tg
el ——
=t{ > R = X
5 - X
Figure B-a
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The engine produces constant thrust along the nominal trajectory (which
is not optimum). Presumably the engine must be controlled in some
way to provide steering but it is not necessary to specify the method

of control in order to determine the A\ matrix.

The equations of motion and constraint are:

x =V, (B-33)
= B-34
.y Vy ( )
v, =as 2p/cm (B-35)
/=0 B-36
V}., ( )
m= -2p/c2 (B-37)
where .
= 7M€ - (exhaust power) (B-38)

2

c = exhaust velocity

Since the velocity and position along the nominal trajectory are easily
computed as functions of time by direct integration, they may be con-
sidered as known functions and we may proceed directly to the varia-
tional equations which are of primary interest. Taking the variations
of equations (B-33) through (B-38) yields

6x = bv (B-39)
X

by = bv, (B-40)

5{,X= ) 2P2 sm + L 5(-2R (B-41)
cm m C

5v_=0 (B-42)

J
§m = 0 - 5(%) (B-43)
C

These may be formed into the matrix equation (B-28)

5s = A s +5f (t) (B-44)
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or

[0 0 1 0 O ] (0 W
0 0 0 1 0 0
5s = 0 0 0 0 -2p/cm 5s + < 1—m6(2p/c) , (B-45)
0 0 0 0 O 0
L0 0 0 0 O . \ - 6(2p/c2) y

The column vector containing the power and exhaust velocity varia-
tions corresponds to the arbitrary forcing functions, f(t), of section B. 2
and to the product B &éf in the general guidance problem. They may be
written in any manner convenient for the investigation at hand. They
are of no further concern at the moment and will be carried along as
B 6f.

The adjoint functions may now be determined by direct integration

of equation (B-46).

A+ A A= O, (B-46)
A(T) = I (B-47)
Expanding the above and integrating the twenty-five equations one ob~
tains v
mg m, -
’(1~——'— +1n——->t>t
c | m m R
m 2m m m
1(1 et In Hﬁ%)t <R
R f
0 1 0 (tf‘-:t) 0
- N
1 1
.A.: <'r_n - mf > t> tR
0 0 1 0 -c < ' \
2 1 1 >
- R
(mR mg m R
\ 7
0 0 0 1 0
0 0 0 0 1
(B-48)

Thus the adjoint set has been determined for a simple case and may

be used in the study of guidance techniques.
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APPENDIX C

PROPERTIES OF THE FUNDAMENTAL
GUIDANCE EQUATION

C. 1 Summary

The contents of this appendix include discussions relative to inter-
changing the control vector and relative to properties of the adjoint set.
In the absence of control perturbations the adjoint set alone describes
the effect of state perturbations and thus may be called the "state tran-

sistion matrix'. Several of its interesting properties are discussed.

Proof of singularities in the guidance equation is presented in

section C. 5.

C. 2 General Remarks

To provide a better understanding of the methods used in the solu-
tion of the equations of motion, and to show the relationship between
- trajectory determination and guidance it is beneficial to examine vari-
ous formulations of the variational equations of motion and the con-

straining equations.

A by-product of using the adjoint method with the calculus of varia-
tions to find an optimum trajectory is the solution of the adjoint set of
equations. Physically the adjoint set represents "'sensitivity' coeffi-
cients or "influence' functions which permit the investigator searching
for a trajectory to determine the changes in trajectory parameters
which will move the solution in the direction of the desired optimum.

It is interesting to note that along the optimum trajectory the Lagrange
multipliers are linear combinations of the adjoint variables. From
the viewpoint of one searching for a trajectory, the adjoint set has
served its purpose once the optimum trajectory is determined. How-
ever, for the guidance analyst the adjoint functions serve a most useful
purpose by showing the effect of spacecraft perturbations on the final

state of the vehicle.
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C. 3 Interchanging the Control Vector

The equations of motion and the mass rate equations, expressed

in a nonrotating frame with origin at the central body, are

r=v (c-1)
v=-Hr+a (C-2)
ve-£r+a
r
m=g_(m,a) (C-3)
or m =g, (1) (C-4)

The variables m and a have a functional dependence which must be ex-
plicitly taken into account. In the subsequent discussion only the VSI

case will be derived since CSI contrcl follows an analogous argument,

The relationship between m and a may be written in any manner
which is convenient to the argument at hand., If one is interested in the

effect of acceleration changes irrespective of their cause then write

m=-2_1 (C-5)
2p
The analysis of Chapter II shows that equation (C-5) is the correct
form for mass rate. By taking the first variations of equation (C-1)

through (C-3) the state variational equation is obtained

6s = A 6s+ B da (C-6)
©r— a —_— a —
where .
O I3 O
A= |-G O, O
a. 3 -5
ol ot =am (C-7)
= =
Oy
B = I, (C-8)
-m2 T
a
p —



where the pre-subscript denotes that a is the control. The submatrices
of A and B are the three by three null matrix 03; the three by three
identity 13; the three by three symmetric matrix of gravitational grad-
ients G; and the three by one null vector O. If the adjoint set for equa-
tion (C-6) is formed such that

A= -A A (C-9)
Aty = 1 (C-10)

then the solution, /., must have the form

N11M12 o
alN 7| a1 fhan 2 (C-11)
T T
0% 0% Mg

where the matrix is partitioned into three by three submatrices, three

by one vectors and a scalar,-/\33.

The form becomes apparent when equation (C-9) is expanded and an
initial condition is applied. Notice also that for the form (C-11) to
exist it is not critical thatj\(tf) = I, only that at some time t,/\ (t) =1

The expansion of (6-9) yields

N =Ny G (C-12)
Ay = ANqg | (C-13)
Ajs=0 (C-14)
j\zl “Ngo G (C-15)
j\zz = Noag (C-16)
Ayg=0 (C-17)
A gy =gy G (C-18)
Ay = Ay (C-19)
j\33 = aimj\% (C-20)
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The form of equation (C-11) is assured if at some time A\ = 1.

Now rewrite the functional dependence of a and m as

f

g :Tn‘" (C~21)
. 2

m= -1 (C-22)
2p

where again f, m and p are per unit initial mass. The A and B matrix

must be modified to

0, I, ga
A= |-G 0O -= (C-23)
of of o
O3
N 1
B= |51 (C-24)
T
| P

where the subscript denotes that f is the control. The state variational
differential equation is

6s = Abs+ B (C-25)

Clearly the optimal trajectory must be independent of the particular
control variation used in the computation scheme. That is, if the varia-
tional problem for computing trajectories is solved using f as the con-
trol, it must result in the same trajectory that would be obtained if a

is used as the control, Thus, two different formulations are available
which may be used at the discretion of the investigator. Since the cost
has been specified as a2/2 it is more convenient to use a as the control
for computing trajectories. Nevertheless, the use of f as a control has

important significance.

The adjoint set which corresponds to using f as the control will now
be determined. Expanding (C-9)using(C-23) one obtains differences
from the set (C-12) through (C-20) only in the last column of the solu-
tion A., That is
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a
. i
A E A P (C-26)
. 2
./\L 23 J\_22_'nji‘ (Cz27) .
N33=0 (C-28)
For boundary conditions A\ (tf) = I, the solution has the form
USRS RIS K
AR PASTRAS PRAPY, (C-29)
OT T

o o 1
The solutions a/\‘ and f_/\ differ only in the last column. The remaining

numbers of the array are identical for each point in time.

The physical significance of this difference is apparent from the
following physical reasoning. Consider the adjoint set as an array of

partial derivatives. If A (tf) = I then the last column is

9 (ty)

9m (t)
jf_tw : 9 () g -50)
—23 ﬁ 5m (t)
/33 8 m (t;)

om (t)

If a is the control then one should expect A ;g and /\ 923 to be null vec-
tors, since for a given acceleration program variations in mass can-
not affect the end point in position and velocity. However the end point
for mass must change because it requires a different amount of pro-

pellant for different size vehicles,

If f is the control and the thrust program is given, then changes in
mass will affect the end points in position and velocity due to the change
in acceleration. For a given thrust program the final mass, however,

can change only if the initial mass changes, therefore A 33 = 1.
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It is concluded that the control vectors &f and éa can be interchanged
inthe guidance equation simply by changing the last column of the ad-
joint set and changing the matrix B. Along the optimal trajectory all
of these functions are known thus the interchange can be easily made at

the discretion of the investigator.

The purpose of interchanging control vectors is simply stated. Com--
putation of trajectories is most conveniently carried out with a as the
control, due to the formulation of the cost. Assume however, that it
is desired to investigate the effects of changes in engine performance
or to investigate variables other than a as quantities to be measured.

Then it is convenient to write, from Chapter II

f=mc (C-31)
then 8f = méc + ¢ dm (C-32)
or 6 = [c m,] ém (C-33)
f=1Ic b
. -2p
Further, let £ =5 c (C-34)
C
2c 2p 2CCT
then 6f = - — bp ~— | L, ~—— | bc (C-35)
- c2 2 3 2 -
or
2 2cce

C [—
If in equation (C-25) or in the guidance equation, &f is replaced by

either (C-33) or (C-36) it is possible to study the effects of the par-

ticular variations represented without computing a new adjoint set.

The ability to interchange control vectors at will, without requir-
ing a complete new set of computations makes the fundamental guidance

equation a very powerful tool.

C. 4 Properties of the State Transition Matrix

If the fundamental guidance equation is written for two different

times t = ti and t = tj and subtracted, then
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ti

A1) s = (1)) 855+ t{ AB ba dt (C-37)

or t,
65, = Ty b5+ Al ) {1AB sa dt (C-38)

where J
T = A A (C-39)

In the absence of control p<—:-r'turbations,Tij completely describes the

transformation of the state vector at tJ. into the state vector at ti. Thus

Tij is called the "state transition matrix''. It is necessary to show
that Tij is nonsingulﬁ". It is desirable to show that it canbe inverted by
inspection and that Tij = Tji' This last property is readily observed by
taking the inverse of equation (C-39).
A (C-40)
1) 1 J
(o) b1 s AT (C-41)
ij ji j 1

To examine the other properties, it is necessary to look first at /A .
From section C. 3 write /A in its general form
ASERAS PRRFAST

A= Nap Nap Aos (C-42)
of  oF Ay

Equation (C-42) is to be understood as representing both the adjoint set

with ias control and the set for a as control. The last column takes on

the value appropriate to the control.

Now, partition A and consider only that portion defined by

N1 N2
H - (C-43)
No1 Ngg
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where the subscript refers to time t.. The differential equations for

this subset of /\ are reproduced from section C. 3.

/'\11 "N G (C-12)
NPV 11 (C-13)
N1 =N g5 G | (C-15)
N g3 - Nar (C-16)

Observe that these equations are independent of the control and are

completely specified by the physical path and the boundary conditions.

Using C-13 and C-16, Hj may be rewritten as

Hj: '/.\12 Mo (C-44)
Naog Ao ;
Now define a new matrix Hj*.,
| UASTRRASY
0 Ayg A g (C-49)
HJ."< and Hj are related by
HJ.*T - H,P (C-46)
where
p. |8 T (C-47)
13 O3
P is a skew symmetric matrix and possess the properties:
P - -1 (C-48)
pT.pl._p (C-49)

Since in equation (C-46) tj is an arbitrary time along the trajectory,
the subscript may be dropped and H*T considered as a time varying

matrix.
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Hxl - HP (C-50)

Differentiating:

H* L = HP (C-51)

From equations (C-12) through (C-16) and (C-44) it is possible to

write
H + HA* = Oq | (C-52)
where
o, I
ax=| 3 3 (C-53)
-G 03

Substituting (C-52) into (C-51) and using (C-50) one obtains

T

H*T = + HxL PA* P (C-54)

Multiplying out the known product yields

T

PA* P = A% (C-55)

since G is a symmetric matrix. Thus the transpose of equation (C-54)
is
H* = A* H* (C-56)

Comparing (C-52) and (C-56) it is observed that H and H* satisfy the

adjoint-fundamental relationship mentioned in Chapter III. That is

d N -
Ht—(HH)_OG (C-97)
or integrating
H>* = H. H* C-58
P j H ( )
where
H(tf) = Hf = 16 (C-59)

Substituting equation (C-50) into (C-58) and using (C-49) obtain

“PH] = - H, PH;F (C-60)
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Using (C-59)

H. PHJ.T

J
Any matrix H exhibiting the property of equation (C-61) is said to

=P (C-61)

be symplectic and its inverse is given by

Hl-_pulp (C-62)

The inverse of the submatrix H of /\ has been obtained by rearrange-
ment of the components. To obtain /\-1 two cases must be considered:

the adjoint sets for the control a and for the control f.

Ifj\_=a/\,then

H O
A = (C-63)
a T

O  As3

where 96 is a 6 component null vector. Further

-1
1 |H O
SN (C-64)
ol L
=6 A3
If A = f_/\, then
H A
A = —6 (C-65)
T
95 1
N3
where j\G denotes
— N o3

Equation (C-65) may be written as the product of two matrices.

A -IGT B _HT 2 (C-66)
| 9% 1] L% 1]
Then _.-H_l oR 11 -1 J_\-G—
(N . . (C-67)
O 1 Og 1
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AL (C-68)

since the second term in (C-67) is its own inverse. Therefore A has

now been inverted for all cases. Now consider Ti"
T..=A L AL (C-39)
1] 1 J

For A\ = a/\ , use (C-63) and (C-64)

|
Hi HJ: Og

[ . AR (C-69)

a’i] of 1733

=6 1334

For A\ = f/\_, use (C-65) and (C-68)
10 -1
HUH G oH {f_&ei .
R e e R (C-170)
96 | 1
l

Finally it is necessary to show that Tij is nonsingular. To do this
it is sufficient to show that the determinant of Hi—1 Hj is never zero and

that A 33 is never zero.

From equation (C-20) it is apparent that if _/\33 (0) = 1 it increases

monotonically, thus is never zero.

Now examine the determinant of

H._lH.
i ]

From (C-61)
det HPHT =detP =1 (C-11)
Since the determinant of a product is the product of the determinants

(det H)? = 1 (C-72)
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From equation (C-62)

det H'! = det (-PHT P) (C-73)
det H'! = det H (C-74)
since det (-P) = (-1)¥ det P = 1 (C-75)

where k = 6 is the order of P.

Since the subscripts i and j are completely arbitrary and since H
is continuous,

1 1

det Hl' Hj =detH "H=1 (C-76)
Thus Tij is nonsingular.

C. 5 Singularities of the Guidance Equation

Solution of the guidance equation for a control program which will
satisfy certain terminal conditions invariably results in the inversion
of a matrix integral expression. In section 3.8 the solution for FTA

guidance requires such an inversion, namely
-1
tf
ML - [ AxBBY AxTat (C-17)
t
1

In this section the proof will be given that M is not singular for
(‘cf - tl) > 0 but that the corresponding matrix denoted by Mo’ with A
in place of A *, is singular. in the case of unconstrained control pro-
grams, for all values of tl along the optimal trajectory. We shall pro-
ceed to prove that Mo is singular and by induction show that M is not

singular.

The following proof of the singularity in Mo was suggested by Dr.

James Potter.
If MO is singular then there is a nonzero vector p such that

M _p=0 (C-18)
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M0 is symmetric thus it is also true that

p. M_ =0 (C-79)
and
pI M p =0 (C-80)
=0 oO=0
This implies that
Ly
o= [ pt ABBT Alp at (C-81)
{
1

However equation (C-81) is the integral of the square of the length of a
vector
t
f 2
S BT Afp | at=o0 (C-82)
t
1

Thus for Mo to be singular it is necessary and sufficient that the vec-

tor integrand of (C-82) be zero.
BY(t) At p, =0 (C-83)

for all t1< t < tf.

That a vector P, exists for the optimum trajectory such that equa-
tion (C-83) is satisfied may be shown by application of the Pontryagin
maximum principle for unconstrained control. The Pontryagin maxi-
mum principle asserts that if the final value, S, of some combination
of the state variables, x, are to be a maximum or minimum with re-
spect to the control variables, y; that is,

min$=d’ x, (C-84)

Vi
then the desired path will be one such that the gradient of the state

velocity, x, in the vector space of all admissible y,

x=g(xy t) (C-85)
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will be orthogonal to a vector p which satisfies the differential equa-

tions adjoint to x = g (%, y, t) and such that the final value of p is

Py = —g+£f (C-86)
where di = 0 for components of the state vector which are fixed at tf
and v, = 0 for components of the state vector to be minimized or max-

f
imized.

Thus to satisfy equation (C-84), it is necessary and sufficient that

o [ 2@yt

P =0 (C-87)
oy
where .
x=g (_, s t) (C-85)
T
9 (g(x, ¥, t))

p=- P (C-88)

ox
p,=-d+vV (C-86)

A proof of the maximum principle is given in Appendix D.

Application of equations (C-86), (C-87), (C-88) to the guidance

problem in this thesis reveals that

O v v
P, = - —5% 4 ;6 = (6 (C-89)
1 ; -1
p=-ATp (C-90)
plB=0 (C-91)

where AT and B are the matrices of partial derivatives in (C-88) and

(C-8T) respectively.

Since p satisfies equation (C-90) and also _/\T satisfies (C-90), a
solution of p is

p= Ay (C-92)
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Then substituting into equation (C-91)
T
Pg AB=0 (C-93)

for all t1< 1< tf. Thus P is a null vector of Mo' Furthermore, since

tl is arbitrary

M(t1)£f=0 (0<t, <t

<ty (C-94)

To show that M is not singular it is sufficient to show that every
null vector of MO satisfies the boundary condition on p, equation (C-86).
This sufficiency condition is easily verified by noting that the final
element of Ps is invariant and that M may be obtained from MO by de-
leting the last row and last column of Mo’ In general, if /\ is inter-
preted as the nonsingular transformation that transforms E? into BT
and if BT is a null vector of B because of the component ;g then delet-
ing the ith row of /A to produce /\ * destroys the transformation which

carries P;s into p.

The fact that only the last row of /A need be deleted is a con-
sequence of the fact that only the last component of the final state vec-

tor, m,, has been maximized in obtaining the optimum path. Therefore,

f.?
we assert that if every null vector of M0 satisfies equation (C-89),

the M obtained in equation (C-77) is nonsingular.

Let us prove then that all null vectors of Mo satisfy the boundary
condition. For the problem in this thesis B is a seven by three matrix
of rank three and contains zeros in the first three rows. By virtue of
the rank, the three columns of B are linearly independent. Further,
since B is of rank three there are four linearly independent vectors
which satisfy (C-91) and thus are null vectors of B. Three of the four
vectors may be chosen to satisfy (C-91) by virtue of the three rows of
zeros in B. These vectors do not satisfy (C-92) and (C-93) and there-
fore are not null vectors of Mo° The fourth vector must be a null vec-
tor of MO since the three columns of B and the four null vectors of B
form a basis in seven dimensional vector space and six of the vectors
are not null vectors of Mo' This vector is unique and must satisfy
(C-89) through (C-93).
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The proof is thus complete since all vectors may be written as

linear combinations of the vectors in the basis.
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APPENDIX D

PONTRYAGIN'S MAXIMUM PRINCIPLE

D. 1 Introduction

In this appendix a derivation of Pontryagin's maximum principle

is given which is applicable to the problem of the thesis.

Consider that the cost function S is some scalar function of the
final state variable, X¢ It is always possible to cast a problem into
this form by redefining variables. The control vector will be denoted
by a generalized vector u, which is bounded by certain constraints. In
addition, the solution must satisfy boundary conditions on some of the
state variables. The desired solution is the optimal control, _O, which

will maximize the cost and satisfy all constraining conditions.

D. 2 The Maximum Principle

Assume that the state variables may be written in the form
X = g(x, u) (D-1)
and that the solution is to satisfy the final boundary conditions

9 (x;) = 0 (D-2)
The cost function may be written as

T T
S=dx; vl g (D-3)

where g is a known vector and V is an unknown constant vector.

Then small changes in the cost due to changes in state are given by

9¢
ss=dTex, + vT —— bx, (D-4)
- = - 9x -
Xt
where
3¢,
! =1o0ro0 (D-5)
0 x.
if
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Equation (D-5) is 1 for fixed boundaries; 0 for unspecified boundaries.

The variables adjoint to (D-1) are given by

o

(t;) =P; (D-17)
The vector p is frequently called the "costate''.

Assume that an optimal control, _1_1_0, is known. Then for small

changes 6u, the state must change by 6x. Then

6x = g (x°+ 6x, u®+ 8u) - g (x°, u°) (D-8)
Consider the term
—d—(ET6§) = pTé}.(+ I;T 6x (D-9)
dt - - = =

Applying (D-8) one obtains

plox = (pTox) - pllg (x°+ 6% v+ b -g (x° v
dt (D-10)
Integrating (D-10) yields
",f tf t
J ploxat=plex | - [ BT ig 0+ bx u®+ Bw) - g (°, Ot
0 0 0
(D-11)
If the initial state .boundary is fixed, 6§o = 0 and the first right hand
- term is
§S = pL 6x (D-12)
By Xy
provided Py is chosen such that
29
pr=d +pt (D-13)

8§f

The right side integrand may be expanded in a Taylor series around the

optimal trajectory if the variations due to control and due to state are
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separated. That is

u® + bu) - g (x°, u°

g (x°+ ox, 30 +0u) - g (§°, 30) =g (_>5°,

)

* —8—[5 (l‘o» 1_10 + du) ] 6x + remainder
o (D-14)

If the adjoint relationship, (D-6), is used on the left hand integrand

of (D-11), the term may be rewritten as

., te .
f .ET 65 dt = - f bT -(z—[g (?_‘O, ll_o) ] 6§ dt (D-15)
0 0 = o&x

Then substituting (D-12), (D-14) and (D-15) into (D-11), the result is

x%, u® + 8u) - g (x° u’)] at

tf
+ f ETJL['& (x2, u® + du) - g (x°, uo)])\ 5x dt (D-16)

0 8x‘, __J

Consider the first integrand in (D-16). If S is a maximum, then any
allowable change du must cause &S to be negative. Therefore for all

0<t<t,

pT g (x° u®+ 6u) - g (x° u%) 1< 0 (D-17)

In considering the second integrand it is argued that admissible
control changes 6u, can produce only a small variation in the deriva-
tive term such that its product with 6x is second order or higher. Con-
sequently the second integral and all higher order remainder terms of

(D-14) are neglected.

Therefore (D-17) represents the sufficient condition for an optimum.
A necessary condition is

Pl (g w0+ bw) - g (=% u)]< 0 (D-18)

The implication of (D-18) is that for all points on the optimal tra-
jectory and for all admissible functions u, ETg must be a maximum,
Replacing g with x, notice that the scalar product of p and the state

velocity must be a maximum.

126




If the control is unconstrained, then a necessary condition that

ETg is a maximum is that

9
8 , T T °&
— ([P g=0=p" — (D-19)
9u 811_ ’
From previous work
og
B=— (D-20)
Iu
Thus a necessary condition for a maximum is
pIB= 0 (D-21)

It is possible to derive the Hamiltonian formulation used in Chapter
III by introducing a slightly different cost function S'. In place of (D-3)
let

Ly
s=f hw da+vT¢ (D-22)
0

where h(u) is some function of the control. Then

! oh T 09
§s' = [ 2% sudt+vy — bx, (D-23)
0 du o 0%,
where again
8¢,
=lorO (D-5)
ox,
if

Equations (D-6) through (D-11) hold and (D-23) may be written as
tf
§S' = [ [h(u®+ 6u) - h (u%)] dt + E? 6x (D-24)
0

provided that P is chosen such that

T8

re-

(D-25)

T
Py =V

@
| =
s
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If D-24) is substituted into (D-11) along with (D-14) and (D-15) , the
result is
6s' = [ ¢ p’ [g(x”, u’+ bu) -g (x”, u’)]+[h (u” + 8u) -h <g°)1J dt

o}

+ higher order terms (D-26)

Equation (D-26) is analagous to (D-16). A sufficient condition that S'

be a maximum is that for all admissible control changes, du
p g (=% v+ 8w) - g (x° )]+ [h (u° + Bw) -h (@) ] < 0 (D-27)
The implication of (D-27) is that for all points on the optimal trajectory

and for all admissible functions EO, (BT_g + h(u) ) must be a maximum.

Using the VSI vehicle as an example

2
h(a) = a_ (D-28)
2
Then using (D-1) define
a2 T
H=—+p " x (D-29)
2

For the linearized guidance problem of Chapter III, the vector é
was interpreted as the velocity of the state error at the final time.
Since _§_ is a state velocity and P is the final value of the costate, using
(D-25)

2 .
H-2 4+, ¢ (D-30)
2
where for fixed boundary conditions
)
‘Q_ =1 (D-31
98

Equation (D-30) is a linearized version of the general Hamiltonian

formulation, but with a nonlinear cost.

D. 3 Optimization Criterion

It was briefly mentioned in Chapter V that the optimality criterion
for Pontryagin's maximum principle is more workable than the calculus
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of variations criterion. This remark deserves further discussion.
From the previous section it may be noted that the criterion for optim-
ality may be stated: '""For admissible control variations, the change in
the cost function must be zero or negative (positive) if the cost is max-
imum (minimum). Admissible control variations are those which

violate neither the boundary conditions nor any control constraint. "

In contrast to this, the calculus of variations criterion for optim-
ality is derived from the integral of the functional F used in Chapter V.
Referring to equation (5-18), for example, the optimality criterion may

be stated: ''For admissible control variations and variations in state,

the boundary conditions must be satisfied and the cost must not change

to first order. "

Since the integral of the functional equals the cost, the form of

equation (5-18), rewritten here as (D-32),

tf i
6]th=0=[ ] [0 yeme( ey
0O O
( ) ém + ( )6§]dt (D-32)

gives the impression that the criterion must hold for all arbitrary
variations in state and control. The implication is not true for the
problem of this thesis and is misleading at best because (D-32) does
not represent the first variation of the cost. It will now be shown
that although (D-32) is satisfied for all variations in state and control,
the optimality criterion can not be satisfied for all arbitrary state

variations.

Let the guidance equation (3 -27) be partitioned such that it con-

sists of two equations

tf
P3 b3
°rl - Alss.+ [ AN'Béa (D-33)
\% t :
-] f }
T 't T i
s = —/}-‘76-S-t+tf A 5 Béa dt (D-34)
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Using the expansion of the matrix A, (D-33) and (D-34) are

.-
f sk
{53} . (M Az '{53} '+ [ A Bé6adt (D-35)
°Y ) N21 Ag °Y)¢ F |
. 2 T ’
- . m _
bm = A, b - tf Agg (_p-) a’ 6a dt (D-36)

Using the solution A33 = mzf/mz from equation (5-25), (D-36) may be

reduced further,

te
[ atsaat (D-37)
t -

om . =

2

My

f ém - —=
p

ﬁmlfw

For the criterion to be satisfied it is necessary that the final state varia-

tion 6§ vanish. First allow 6£ to take on a nonzero value but let dm

t v} . t
equal zero. Then (D-35) and (D-37) become
tf ’
Oo=(t+ [ A'Béadt (D-38)
t
m2 te .
0-0--L [ aTsaat : (D-39)
: b {
From Chapter III it is known that all propellant optimal control varia-
tions which satisfy the boundary conditions are
ba=BTA * M '(-§-a (D-40)
Substituting this solution into (D-39) and expanding yields .
m2
0=-_1 I:HTM_IQ-ZJ—QTM_]'é:l (D-41)
p
However, along an optimal trajectory
T in-25=0 (D-42)
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Thus to satisfy (D-39) it is necessary that
0=nrmle (D-43)

(D-43) does not hold in general. It holds only when the error £ is such

that a control change 6éa orthogonal to a can satisfy boundary conditions.

Now consider a variation in 6mf but no variation in position or

velocity. Then it is required that

ty
0= [ A*Bsadt (D-44)
t
w2 o2t
f f
0= — -2 [ atsa (D-45)

A general variation 6a may always be written as

8a =Bl A*'71-a (D-46)

Inserting (D-46) into (D-45) and (D-44) and solving, one obtains from
(D-44)

r=mlyg (D-47)
and from (D-45)
om
p—o=1 1 -2] (D-48)
m
t
Eliminating 7
ém
p—g =7 M n-27=0 (D-49)
£

Therefore there are no variations iim,C which permit the boundary con-

ditions to be satisfied and which do not change the cost.

It is concluded that the calculus of variation criterion and formula-
tion can be misleading if not treated with much care. The Pontryagin
principle avoids the difficulty by making no explicit requirements on

state variations.
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APPENDIX E

STEEPEST ASCENT FORMULATION FOR GUIDANCE

E. 1 Introduction

In this appendix the guidance problem will be formulated as it would
appear in a ''steepest ascent'' trajectory computation procedure. The
steepest ascent method is characterized by a rigid control over the
step size between iterations. This step control is to prevent the pro-
cedure from violating linearity assumptions as it approaches the opti-
mum. Sophisticated techniques have been devised for automatic selec-
tion of step size. 26 However, at some point the investigator must use
his experience and judgement to select a constant or matrix of con-
stants to insert in the selection procedure for step size. The author
is convinced that the additional complexity of rigid step control cannot

always be justified.

E. 2 Steepest Ascent Solution

For simplicity in illustrating the steepest ascent method, consider
only the trajectory problem for the unrestricted VSI mode of control.
In this problem it is desired that the optimal acceleration integral be
a minimum,

2
°|
dt (E-1)

[

Ly
°=f
0 2

It is further desired that the change in the acceleration program from

one iteration to the next be such that
2 it 2
k= [ [sa] at (E-2)
0 2
where k2 is a constant to be selected at the discretion of the investigator.

In order to satisfy, to first order, the terminal constraint §, 6a

must satisfy the relation

132




iy
-t=[ A'Bsaat (E-3)
0

where all variables are defined exactly as in Chapter III.

Define the new cost function J' such that
T
tf 0" O te tf
a2 4 x
Jt = f ——-——dt+—1<k2 - f aaTBadt>+ . < £+ f _/\_B6adt>
s = Lo s o
0 2 2 0 0

(E-4)

where Ty and 75 are constant Lagrange multipliers, a scalar and a

vector respectively.

For arbitrary variations in 6a, the first variation of J' must vanish.
Thus for

2% =a+ da (E-5)

where a is a nonoptimal program,

0= |i(§-+ 63)T: 7r1 SET + E;r _/\_*B:| 6(62) (E-6)
5(da) £0
or
_BT _/\*T Ty -2
ba = (E-17)
(1 - ”1)

The multipliers may be determined by satisfying the constraint equa-

tions. First solve for 7 through equation (E-3).

2
My = MTN(L-T) E -] (E-8)
where
te . T
M= [ AFBBT A* at (E-9)
0
te
n= [ A'Badt (E-10)
0
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and

T _ 2
sa=- BT A* Mll:_g_- 1 ]- (E-11)
(1"77'1) (1_77'1)
Using (E-2) to solve for one obtains
A (1-71'1)
o 27-n My
(1-7.)" = — — (E-12)
1 K2 - T Ty
or
. k2 _ éTM-lé
= 1 (E-13)
(1-7r1) 2J-n"M "

where J is the acceleration integral for the nonoptimum program.

The factor ( > is the step size control which must be deter-

1
l—nl
mined by judicious selection of kz. Observe, however, the result of

using (E-11) to evaluate the integral of ET ba. This term is the cross

product in the expansion of lgo I 2 by equation (E-5).
Ly
fateaat=-gTmte-L @r-gTmip (E-14)
0 1-7r1

As the program a approaches go, the difference, 6a, must vanish.
Likewise the error £ must vanish. From (E-14) either the step size
must approach zero or the term (2J - ﬂTM-lﬂ) must approach zero or

both. It is easy to show that both must approach zero. Consider

BT ATwmlg-a (E-15)

|e
11}

Then

[ ataat=27-nTm 1y (E-16)
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Clearly

[ aTaat>o0 (E-17)

with equality holding only when
-1
n

a=8BT AxTm g (E-18)

Equation (E-18) holds only along the optimal trajectory Therefore from
(E-13) it is clear that for( )to remain finite, (k - .ﬁ M~ £) must

approach zero at leas. as fast as (2J - nTM n). Since |£ | approaches

zero thisimplies that k2 must be reduced to zero as the optimal path is
approached. One concludes that "'steepest ascent'’, as formulated using

the usual technique 26, inherently converges slowly.

The approach in this thesis is to assume that as |§| becomes small
the step size will automatically become small without the arbitrary con-

straint imposed by k2. Thus 7, is set equal to zero and the procedure

1
allowed to converge as rapidly as possible. The results appear to

justify this procedure.
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APPENDIX F

COMPUTATIONAL COORDINATES

F. 1 Introduction

In this appendix the computational coordinate system is derived
from the ephemeris data of the launch planet and target planet. In the
chapters describing the guidance equation and its uses, generalized
vector notation is used and the problem of coordinates does not arise.

The motion is assumed to be described in a nonrotating frame.

For computations, however, it is necessary to be more specific.
The computational frame used in computer tests is a heliocentric frame
defined by the transfer plane and the initial point. The transfer plane
is the plane which contains the initial point, the final point and the sun.
The x axis of the system passes through the initial point, the z axis is

northerly and the y axis completes the triad.

The objective is to describe the transfer plane and its coordinate
system in terms of ephemeris data. This data may be given in either
ecliptic or equatorial coordinates. The description of these systems
and the transformation between them is available in most basic celes-

tial mechanics texts and will not be reproduced here.

F. 2 Computational Coordinates

Designate the unit vectors in any system as i, j, and k and attach
subscripts to denote the system. For the computational system use
subscript c. Then, if the launch and target points are denoted by sub-

script L and T respectively,

r
_ =L -
i — (F-1)
L
r Xr
ko= ——— (F-2)
ry, XIp
JC = Ecxic (F—S)
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The transfer angle, 8, in the transfer plane is determined by

r. Xr

k sing=- = =T (F-4)
LT

|k _sin 6] = sin 6 (F-5)

The coordinates of the launch (initial) point are

*L L
y,y = 0 (F-6)
zr 0
c
The coordinates of the target point are
Xm rp COs 0
Y = r'm sin 6 (F-17)
Zr 0 c

Two additional parameters of interest are the inclination of the
transfer plane to the planes of the launch planet and the target planet.
If the northerly normals to these planes are denoted by EL and _IET
respectively, and the angles by ar. and ar respectively, then

cos a; = EL : Ec (F-8)

cos a,, = k (F-9)

T =T —lic

where

_ ILXI(L + 90°)
L7 |
I, XI (L + 90°)

(F-10)

L XI(T + 90°)

Xr

k
r ° |
Ip LT + 90°)

L~

(F-11)
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From the preceding equations, numerical values of the coordinate
transformations (i. e. the orthogonal transformation matrix) between an
ephemeris tabulation and the computational coordinates can be com-

puted when the launch date and transfer time are specified.
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APPENDIX G

COMPUTER PROGRAM

G. 1 Introduction

The FORTRAN program used to test the guidance theory is repro-
duced in this appendix. The input data format is given as well as the

units for input data.

There are a few areas in the program which can be made more
efficient, since testing is completed, however it operates quite satis-
factorily as presently written. The author is indebted to Mr. Krupp

for his magnificent efforts in writing this program.

G. 2 Input Format and Units

Nine data cards are required for each pf‘oblem to be computed.
The format for each is 3F20.9. The following sequence and units are

required:
1.) Initial position (A.u.)
2.) Initial velocity (A.u. /day)
3.) Target position (A.u.)
4.) Target velocity (A.u. /day)

5.) and 6.) Estimated v vector. For VSI control, both cards are
null vectors. For CSI control, card number 5 is the null
vector and card 6 should contain a number of the order of

maximum initial acceleration. The units are (A. u. /dayz).

7.) a. Number of iterations desired
b. Maximum initial acceleration in units of 10-4g0. (Example,

1.2). For VSI problems use any large number.
c. Gravitational constant of the central body in units of
(A.u)°/day®. For the sun this value is 0. 000295912,

8.) a. Maximum time step desired (days).
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b. Earth gravity (A. u. /dayz). This value is 0. 494840.
Flight time (days) .

9.) a. Exhaust power of engine per unit mass (A. u. )z/day3.

The conversion is: divide power in kw/kg by 3. 4653 X 10%,

b. Switching number. (use 1.0).

The routine will accept as many problems of one type as desired. CSI
and VSI problems cannot be run together. Submit a complete set of

data cards for each problem.

G. 3 The FORTRAN Program

Except for subroutine DERV, the programs for CSI and VSI control
are identical. There is a subroutine DERV for each mode of engine
control. Select the routine appropriate to the problem and omit the
other. Selection cannot be made automatically with the current pro-

gram.

The FORTRAN source program is reproduced on the following
pages. The generalized flow chart is presented in Figure G-a. Figure

G-b is the storage map for computer variables.
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Fig. G-b. Computer storage map.
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(]

a¥aNakeEaBaNa!

LASEL

LIST

MAIN

DIMENSION W(12y 20)s T(7s 8s 60)

READ 1y ((M{Iy J)> J=15>§ 20)s I=1y 7y 2)y W(Bs 17)s W(8y» 15)
INPUT DATAs (SEE FORMAT)
LAUNCH (POSITION, VELOCITY)
TARGET (POSITIONs VELOCITY )
ESTIMATED NU VECTOR
NUMBER OF ITERATIONSs MAX ACCELERATION, GRAVITATION CONSTANT
MAX TIME STEP, EARTH GRAVITY, FLIGHT TIME
POWER, SWITCHING NUMBER ‘

FORMAT (3F2049)

NIT=W(7s 15)

W(8s 20)=W(T7s 191/1000040

W(6s 17)=W(7s 16)%W(8s 20) . _
TRANSFER OF INPUT QUANTITIES TO FINAL STORAGE

W(Bs 16)=240%¥W(Bs 17)/W(6s 17) *
COMPUTATION OF EXHAUST VELOCITY

PO 5 L=1as NIT , ‘
ITERATION LIMIT (NIT)

CALL CORREC(Ws T)

CALL LAMTAB(W, T)

PUNCH 25 (W(5s I)s 1=15s 20)

FORMAT (3E2048)

GO TO 3

END

143

27



2]

— N WP

LAMTAB

LABEL

LIST

SUBROUTINE LAMTAB(W,s T)

SUBROUTINE COMPUTES, PRINTS SACKWARD INTEGRATEZD LAMBDA MATRIX
DIMENSION W(12s 20)s T(7s 8s 60)s Q(10» 10)
L=W(8y 191+.01

L IS STEP NUMBER
DO 20 LL=1, L
A=T (7, 1o LLI*T(7s 1y L+1)
IF{(5*#(({LL=-1)/5)~LL+1) 65 55 6

PAGE SPACING OF LAMBDA PRINT QUT
PRINT 3
DO 10 I=1s 7

DO 10 J=1s 7
Qs U)=040

DO 10 K=1s 7

Q(Is JI=Q(Ts U)+T(Iy K+ls LLI*¥T(Ks J+1ls L+1)
INVERTED FINAL VALUE OF FORWARD INTEGRATED LAMBDA MATRIX
MULTIPLIED INTO LAMBDA MATRIX AT EACH STEP

FORMAT(174Xs Fl648) :

FORMAT(1H12X4HTIMESOX13HLAMBDA MATRIX)

FORMAT(1H sF742s 7F1648)

FORMAT(8Xs T7F1648)

PRINT 2

PRINT 2s T(ls 1 LL)s (Q(Is 1)y I=1ys 7)

PRINT 1s {((Q(Is JYs I=1s 7)s J=2s 7)

PRINT &4y A

RETURN

END
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3t

1¢

240

3

2
1

CORREC
LASEL
LIST
SUSRQUTINF CORREC(Wy T)
SUBROUTINE COi4PUTES NEW INITIAL VALUES FOR NEXT ITERATION
AND PRINTS FINAL VALUES OF INTEGRATED QUANTITIES
DIMENSION W{12s 20)y Q(10s 10)» T(7s 8» 50)
CALL INTEG(W,s T)
DO 10 1=1ys 6
W(RBy 15)1=2e0
WGy I+14)=W(ly I)=W(3ys I+14) .
COMPUTATION OF MISS VECTOR AT TARGET (TARGET XI)
W(2s I+14)=0.0
PO 10 J=1s 6
W(2s T+14)=W(2y I+14)+WII+5,y J)*{W (1 J)=W(3) J+14))
TRANSFORMS TARGET XI TO EQUIVALENT LAUNCH ERROR (INITIAL XI)
Q(ls J)=W(I+5y J+7)
CALL INVERT(6s Q)
INVERSION OF M STAR MATRIX
DO 27 I=1y 6
NO 20 Jd=1s b6 . .
W(Bs, T+14)=W(5y 1+14)-Q(1s J)*W(2s J+14&)
COMPUTATION OF CORRECTED NU VECTOR
FCRMAT (1H15X13HINITIAL STATESX11HFINAL STATE6X12HTARGET STATE9X
C 3HSTAL1IX9HTARGET XI8X1OHINITIAL XI7X1O0HNU X 10000)
FORMAT(1H +7F17.9)
FORMAT(1HCU/1HCOX1IHJ53X12HMSTAR GATRIX/1IHOELI7e736F17e6/(10X6F17:61))
AJ="1(5s 317247
PRINT 3
PRIMT 2
DO 23 I=15. 20
XNU=wW(5s 11%1000040
PRINT 2 Wil loW(leI=1G)sW(3sl)sW(3sI=14)sW(4sl)sw(2s])sXNU
PRINT 1s AJs ((w(Is J)sl=6s 11)s J=8s 13)
N 3C I=1s 7
NO 38 J=1y 7
S(1, Jy=w(J+5, 1)
CALL TNVERT(7s @)
L=418, 19)+1,01
DO 43 I=1s 7
DO 40 J=2, 8
T(Is Jo L)'-:Q(I, J-=1)
T(7s 1s L)Y=1eQ/W (59 7)
INVERSION OF FINAL VALUEZ OF FORWARD INTEGRATED LAMUDA MATRIX
RETURN

END

v

46
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[SM]

INTZG
LA3EL
LIST
SUBROQUTINE INTEG(Ws T)
SUSROUTINE CONTROLS INITIAL VALUZS FOK INTEZGRATION
AND PRINTS OUT TRAJECTORY VARIABLES AT EACH STEP
PTSENSION wW{12s 20)s D(12s 20)s T(7s 8y 50)
DO 10 I=1s 1648
ND(Ts 1)=040
W{{Te 1)=0
NC 23 1=1s 6
H(I+3, 1)1=140
W{ls 1)=%W(1ly I+14)
W(2s 1)=W(5y [+14)
#{ls 7)=1lel
W2 7)=JOQ
W5y 7)=1e0
W{l2s 7)=140
W{Ts 19)=D40
W(7s 15)=140
W(Rs 18)=02e0
INITIAL CONDITIONS FOR INTEGRATION

CALL DERV (',

D)

IF(W(T7s 16)=ul6s 17)) 305 30s 35
TEST FOR THRUST LIMITATION SWITCH POINT

W7 15)=06D
CALL DERV (',

D)

L)

NEL=w(Ts 18)
LIMITATION OF INTEGRATIGN oTEP SIZ:=

2 FCAVATILIALLIIX4HTIMESBX12MACCELERATIONTX9HACCEL MAGBABHPOSI TIONGX
C 8AVELOCITYLIX4HMALSL13XSHGAMMA/26X9HX 10000/G8X9HX 10000/G)
2 FORMAT(LH oF1744s 6F1747)
1 ENPYMATIIH +17Xy Fl7e7s 17Xs 2F1747)

NG 70 1=1s 57

A=Ay 18)/%W (8 20)

A2=w(6y 19)/W(8s 20)

3= {6y 2U)/W(8s 20)

Aid=0(5y 2)/4(8s 20)

GAMEY (Ty 16)/W(6s 17)

“ (8. 16)=1

DD 47 J=1s R

DO 40 K=ls 7
G T(Ks Js DI)=w(J+4s K)
TF(Lo#((I-10/10)=1+1) 46 455 46

Ut

-

o

45

46

5%

75
8%

PAGE SPACING FOR TRAJECTORY DATA

PRINT 3
eRINT 2

DRTINT 2y W(591)sAlsAMsW(L1s1)swW(1s4)sW(1ls7)9GAM
PRINT 1s A2 {(192)sW(1s5)9A35w(193)sW(1s6)

TE(DEL+W(5

1)-w (7, 20)) 609 60s 50

TEST FOR END OF FLIGHT TIME

DEL
IFL

DEL/W(T,

W(Ts 20)=W(5s 1)
18)=40001) 80y 82, 70

TEST FOR FINAL STEP LESS TAAN .0001

CALL STEP(W,
RETURN
END

Ds DEL)
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45

90

STEP
LABEL
LIST
SUBROQUTIME 3TZP(wls D1s DEL)
SUEROUTINE SELECTS STEP SiZc ON BASIS OF INTEORATION
ERROR ANC THRUST LIMITATION SWITCH POINT
DIMENSION 41(240)s D1(240)y W2{240)s D21240)s W3(240)s D3(240)
FLAG=W1(175)
DZFINITION OF FLAG
DC 10 I=1, 240
D2(I)y=01(1)
C3(0)=01(1)
W2 (I)=W1(Il)
W3(I)=Wl(1l) )
DEFINITION OF VARIABLES FOR TRIAL INTEGRATION
CALL RUNKUT(MW2y D2s DL
TRIAL INTEGRATICN
IF(FLAG=42(186)) 20y 155 15
TEST FOR THRUST LIMIT SWITCH CFF POINT DURING INTEGRATION
FLAG=0.0 ’
GO TO 30 .
IF(FLAG=YINLIF(W2(186)~1e0s «5)) 255 40 40
TEST FOR .THRUST LIMIT SWITCH ON POINT DURING INTEZGRATION
FILAG=740
DFEL=DFL*AISF((W1(187)-Wl
SELECTICN OF STaP ¢
S0 253 JT=1.
D>(Ty=01C1)
V201 y=wlel)
CALL RUNKUT(wW2s D2s DEL)
INTEGRATION OVER FULL STEP
CAlL RUNKUTI(W3s D39 DZL/2eD)
CALL RUNXUT(W3s D3s DEL/240)

198))/(W1(187)=-w2(187)))
GINNING AT SWITCH POINT

(

240

TWO IMTEGRATIONS OF HALS STEP EACH
TEST=ASSF(W2(174)/43(174)=1+0)/+000045+40001
IF(TEST~-2.0) 5%y 554 50

-

EGRATION

CIFFERzNCE TEST OF FULL STEP AND HALF STEP INT
DEL=DEL/TEST*%425
IF(TEST=.05) 60 605 70
DEL=MINLIF(W1(211)s DEL/TESTH#%,25)
SELECTION OF STEP. SIZE FROM ERROR TEST

DO 75 I=1y 240
DI1(I)=03(1)
WI0DYy=wW3(I)

STORAGE OF INTEGRATED VALUES FOX NEXT INTEGRATION STEPR
W1(223)=TEST*#.000003 .
IF(W1(175)-FLAG) 80y 90s 80
W1(212)=W1(175)=FLAG
W1(175)=FLAG
STORAGE OF THRUST LIMIT SWITCH POINT
CALL DERVI(W1l,s D1)
“1(222)=060
RETURN
END
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DYDY YN N

-
P

ut
L

-4 NN

Sy

nro e a3
-+ > C

UBROUTINE RUN

d

LaT X%
X%
(XQO)*
(X1)%
(Xz2)*
(X3)¥*
DeL X

LU | S N | N | I 1}

DO
NG 15 L=1s 3
S=DEL#C(L)

S50 10 I=1. 168
VD)=LD) +E#D
CALL DIZRVI(¥Ws D
E=DEL/6eC

N0 20 I=1, 168
WI1(I)y=sWwl(I)y+E#*
CALL DERV (%1,
RETURN

END

KUT(Wls D1s DEL)

DX/DT
F{XsT)
F(X0s TO)
F( (X0 +
F( (X0 +

FIXO + (DL TI(X2)#),
(XO)* + 2(X1)% + 2(X2)})%
ENSION W1(240)s D1(168)s W(240)s D(168s &)y C(3)

(DEL T

(Is L)
{1, L+1))

«SIDEL THIXC)*)o»
«S5(DCEL THIXL)I*)

(TO +
(TO +

«S{UEL T))
«S5(DEL T))

(TO + DEL T) )
+ (X3)¥%)/6

(D(Is 1)+2e0%(D(1s» 2)+D(1Is 3))+D(Is 4))

Dl)
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NOOO0OCOCCUTO0 (4]

<

[aRvRw]

11

12

14

15

35

INVERT
LABEL
LIST :
SUBROUTINE INVERT(N,s QQ)
SUBROUTINE INVERTS MATRIX BY SIMULTANEOUS DOUBLE PRECISION
ROW REDUCTION OF THE MATRIX TO IDEM AND IDEM TO THE INVERSE
DIMENSION QQ(10s 10)s Q(10y 20)
DO 10 I=1, 10
DO 5 J=1, 10
Q(Is J)=QQ(Is J)
Q(Is J+131=0.0
Qs J+20)=040
Q(Ts J+30)=0,0
A(ls 1+10)=1,0
DO 30 I=1s N
DO 14 J=I, N
IF(ABSF(Q(Is 1))=ABSF(Q(Js I))) 11s 14s 14
TEST FOR LARGEST ELEMENT IN COLUMN
DO 12 K=1s N

S=Q{Jy K)
Q(Js K)=Q(Is K)
Q(lIs K)=S

S$S=Q(Js K+10)

Q{Js K+10)=Q(1ys» K+10)

Q(Is K+10)=$
TRANSFER ROW OF LARGEST ELEMENT TO FIRST ROW

CONTINUE

DIV=Q(Is I)

DO 15 J=1s N

Q(Is J)=Q(I, J)/DIV

Q(Is J+10)1=Q(Is J+10)/D1V
DIVISION BY DIAGONAL ELEMENTS

DG 30 J=1s N

IF(I-J) 20, 30s 20

DIV=Q(Js 1)

DO 25 K=1s N

Q(Js K)=G(Js K)=Q(Is K)*¥DIV

Q(Js K+10)=Q(Js K+10)-Q(I>» K+10)1%¥DIV

° DIAGONALIZATION OF MATRIX

CONT INUE

DO 35 I=1s N

DO 35 J=1s N

QC(Is J)=Q(Is J+10)

RETURN

END

TOTAL 289
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2v

DERV

1 ADT
(SO R

LIST
SUBROUTINFE DERV(Ws D1)
LINEAR OFTIMUM
SUBROUTINE ESTABLISHES DIFFERENTIAL EQUATIONS OF SYSTEM
NDIMENSION W(12s 20)s D(12s 14)s D1(168)
R=SCGRTF (W (1s 1)%32+W(1y 2)##*24+W(1s 3)3%2)
Ri13=W(Ts 17)/R%%3
RI4523 4 0%RM3/R¥*% 2
RL=RMB# (W ( 1y 1)%W(2y &)+W(1ls 2)%W(2s 5)+W(ly 3)%W(2y 6))
CONPUTATION OF GRAVITATIONAL GRADIENT
A2=SARTF (W (2y 4)%¥2+U (2 B)*#2+W(2y 6)%%2)
D(5y 1)=140
D(Ss 2)=W(hs 17)/W(ls TI¥W(Ts 15)
D(Gs 3)=D{5, 2)%#%2
D(5s 4)=e5%A2%D (5 2)
D(5s 5)=D(5, 2)#W{ly 7)
D(S5s 6)=D(5s 2)/W(ly TY¥W(6s 17)
DERIVATIVES OF PARAMETRIC VARIABLES
¥W(6s 15)=R .
STORAGE OF R FOR ERROR TE&ST
Wby 16)=MAXLIF(A2%W(1ls 7)/W(6s L7)%W(8s 15)s 1le0)
W(T7s 16)=L2%V(1y T)I¥W(8s 15)
COMPUTATION OF THRUST SWITCHING FUNCTION
DO 10 I=1s 3
W(bs I+17)=W(2s I1+3)%D(5, 2)/A2
COMPUTATION OF ACCELERATION VECTOR
D(1s 1)=W(1ls I+3)
D(1s T+3)=(6s I+1T7)=RM3*%W(1ls I)
ZQUATIONS OF MOTION
D(2s T)=RM3% (2, I+3)-RL*W(1ls 1)
D(2s I+5)==4(2s 1)
ZULZR EQUATIONS (MASS INCEIPENDENT)
Dlls 7)==u(6s 17)/W(8s 16)%4(Ts 15)
MASS RATE ZQUATION
D(2s 7)=4{2s 7)%D(5, 2)/%(8s 15)
FULER ZQUATION FOR MASS
D(B, 7)=u(5s TI#D(5, 2)/W(86s 16)
ADJOINT EQUATION FOR MASS SENSITIVITY

- I—;.’ 6
(3 I1)=W{I+5y G)¥W(6s L1B)+W(I+5s 5)%uw(6s 19)+W(I+5s S)*wW(6s 20)
SQUATICN FOR ETA VECTOR

wilbs T)=VilI+5s G)¥W(2s G)TW(I+Ds 5)%#W(2y S5)+W({I+5,s 6)*W(2s 6)
QUANTITY USED IN M STAR MATRIX
RU=RASH (W (I+5s 4)¥W(1ls 1)+W(I+5s 51w (ly 2)+W(I+5s 6)%W(1ly 3))
D(I+5, 7)=D(3s I1)/W(1ls T)
ADJOINT ZQUATIONS FOR MASS DEPENDENCE
D0 23 J=1, 3
DUI+5y J)=RM3%*W(I+5y J+3)=RL*¥W(1ls J)
DOI+5, J+3)==W(I+5, J)
ADJOINT EQUATIONS (MASS INDEPENDENT)

w
[\

TOTAL PVAL
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33

RL=(W(2s 1)#W(2s 4)+W(2y 2)¥W(2s 5)+W {2y 3)RVI(2s 6))HA2¥W(1y T)

QUANTITY USED IN M STAR MATRIX

DO 30 I=1s 6

DO 39 J=ls 6

F=0el

NO 25 K=1s 2 ;

FaF+u(I+5> K+3)%W(J+5s K+3)

D(I+5, J+7)=(F=D(3y 1)%#D(3, J)/D(5s 3)1%DI(5, 2)/A2
DERIVATIVE OF M STAR MATRIX

W(I+5s J+T7)=W(I1+5s J+T)1+W(4s D1)*W (4 JY/RL*¥W(6s 17)%#W(8s 18)
CORRECTION TO M STAR FOR VARIABLE INTEGRATION TIME

W(J+5, T+7)=W (145, J+7)

D(J+55 I1+7)=D(I+5s J+7)
M STAR IS SYMMETRIC

DO 40 TI=1, 168

D1(I)=D(Is 1)

RETURN

END

TOTAL
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DERV

LaARREL

LIST

SUGROUTING DERVIiWs D1)

QUADRATIC GPTIMUM
SUBROUTINE ESTABLISHES DIFFERENTIAL EQUATIONS OF SYSTEM

DIMENSION W(12s 20)y D(12s 14)s D1(168)

W(Ry 15)=1e0

R=SOQRTF(W(1ls 1)¥¥2+W(1ly 2)%*¥2+{1s 3)#¥%#2)

RM22U( Ty 17)/R*%#3

RMB=3,0%RMB/R#%2

RL=RMS* (W ( 1y 1)%W(2y &4)+W(1ls 2)%W{(2s 5)+WI(1lys 3)¥W(2s 6))
COMPUTATION OF GRAVITATIONAL GRADIENT

A2=SQRTF(W(2s &4)**2+W (29 5)¥*2+W(2y 6)%%2)

GMAASS=W (29 TI¥W(1ls T)¥%2/%W (8, 17)

GAM=MAXIF(A2/% {6y 1T)¥W(1ls 7)=GrASSy 1e0)
THRUST LIMIT SWITCHING FUNCTION

STAR=YW (7 15)%(W(ls 7)/W(6s 17))%%*2
QUANTITY USED IN M STAR MATRIX

D(5s 1)=1aC

D(5s 2)=A2/{GAM+GMASS)

D{Sy 3)=D(5, 2)%%*2

N3y 4)=a5%GAMED(Ss 3)

D(5s 5)=D(5s 2)¥%u(1ly 7)

D(5y 6)=D(5y 2)/W(ly T)¥W(6Es 17)
DERIVATIVES OF PARAMETRIC VARIABLES

vi{dsy 15)=R
STORAGE OF R FOR ERROR TEST

Ay 16)=CGAM

W7y 16)=A2%W(1ly T)=GMASSH*WI(6s 17)
STORAGE OF THRUST LIMIT FUNCTION

NO 10 I=1s 3

Wby T+17)V={2s I+3)/(GAM+GMASS)

COMPUTATICN OF ACCELERATION VZCTCR

e T)=W{ls I+3)

sy T4+3)="(6s [+17)=RM3¥W(1ls I)

EQUATICONS OF MOTION

D{Zy T)=RM3%¥W(2y I+3)=RL*W(1» I)

Di(2s 1+3)==u(2y 1)
EYLER FQUATIONS (MASS INDzZPZNDENT)

D(ls 7)==D(5s 3)%W(1ls T)¥¥2/W(8Bs 17)/240
MASS RATE EQUATION

D(2s 7Y=W(1s 7I¥*¥D(5s 3)/W(8s 17)¥W(2s 7)
EULEZR *EQUATION FOR MASS

D(5y 7)=%{ls 7)%D(5s 3)/W(8s 17)%W (5 T7)
ADJOINT EQUATION FOR MASS SENSITIVITY

DO 2C I=1s 6

D(2s T)=wW{I+5s &4)¥W(6s 18)+W(I+Ds D)*W (6 19)+W([+5y 6)¥W(6s 20)
EQUATION FOR ETA VECTOR

RL=RM5% (W({I+5s &4)¥W{1ls L)+W(I+5y D)% (1 2)Y+W(I+5s €)%Y (1l 3))

D(I+5, 7)=D(3s 1)/%W(Ly T)
ADJOINT EQUATIONS OF MASS DEPZINDENCE

N

TOTAL
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47

PO 2% J=1l, 3
DII+5, J)=RM3#W(I+5, J+3)-RL¥W(ls J)
DIT+5, J+3)==W(I1+5, J) ,
ADJOINT EQUATIONS (iMASS INDEPENDENT)
DO 30 I=1s 6
DO 30 J=1ly 6
£=040
NC 25 K=1,s 3
FaF+W(I+5s K+3)%W(J+5s K+3)
DII+5y J+T7)1=(F=D(3y [)#D(3s J)*STAR)/GAM
DERIVATIVE OF M STAR MATRIX
D(J+5s 1+71=D(I1+5s J+7)
M STAR 1S SYMMETRIC
PO 40 I=1s 168
D1(1)=D(1,s 1)
RETURN
END
17

TOTAL 17+
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APPENDIX H

NUMERICAL RESULTS

H. 1 Introduction

In this appendix the computer output data from a sample run of
each control mode are reproduced. The data sheets are in general
self explanatory except perhaps for the format of the A matrix and

the units.

All parameters and variables derived in the linear theory are
printed out. In addition, the important variables are plotted in Figures
H-a through H-r. '

H. 2 Format and Units of the Data

The first pages of each example contain:
1.) The time in days from initial point,
2.) The acceleration program in units of 10-4go,
3. ) The acceleration magnitude in units of 10_4go,
4.) The position in A. u.,
5.) The velocity in A.u. per day,
6.) The normalized mass,
7.) The switching paraméter, Y.
The coordinates are computational coordinates in all cases.

Following the state and acceleration data are the terminal values
of interest printed as column vectors. The units are A.u. and A u.

per day.

The elements of the M* matrix, which are the next set of numbers,

are not particularly interesting and may be disregarded.

Adjacent to the M* matrix is the cost quantity J with units of
(A. u. )2 per (day)3.
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The next set of pages contain the elements of the A matrix for
both optimal acceleration and optimal thrust programs. For each time
point, the array consists of 50 elements which are interpreted as par-
tial derivatives or influence coefficients. The array is ordered as in

the equation
6s¢= A(t) 6§t

The first 49 elements are the adjoint set for an optimal thrust program.
The adjoint set for an optimal acceleration program is obtained by re-
placing the seventh column with zeros for the first six elements, and

replacing the 1 with the element below it. That is: the array

Aoy Mgy N3

of o' 1
N 33
yields A (optimal thrust)

-
N1 N DNgs
Nogp Ngg Ao

@) 0] 1
L — - .
and /A (optimal acceleration)
ANir N Q
Ngy Ny ©

T T
o O Agzs

_

The applicable submatrices, interpreted as partial derivatives, are
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Or ¢ Or ¢ Or
aEt B_Yt E)m,c
BXf azf al;f
8£t th Bm,c
amf Bmf Bmf
8_r;t th amt

The units are A.u. and A.u. per day for position and velocity. The
seventh column is with respect to a 100% change in mass. For example

the units of 'aﬁf are A. .
amt 100% change in mass

The first set of data is for unrestricted VSI control. The second
set is for CSI control with a, = 1.2 X 10_4g0.
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ACCELERATION MAGNITUDE (x10%g )
O (@) - - _ - —_ —_ —
® © o0 - N w » a o

(o]
~

VARIABLE SPECIFIC IMPULSE
CONSTANT
SPECIFIC
L IMPULSE
1 | ] ] ] ] | ] ] ] 1 | 1
o I0 20 30 40 50 60 70 80 90 100 WO (20 130 140

TIME (DAYS)

Fig. H-a. Acceleration schedu.le for 150-day Earth-Mars transfer.
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3.0 1

2.8

- Ofx(tf)

(METERS)
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| l ] ] | 1 ] ]

]

]

20 30 40 50 60 70 80 90
TIME (DAYS)

Fig. H-d. Sensitivity of r, (tf) to position variations.
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Fig. H-e. Sensitivity of r, (t5) to velocity variations.
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Fig. H-f. Sensitivity of fy (tf) to position variations.
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Fig. H-g. Sensitivity of ry (tf) to velocity variations.
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Fig. H-h. Sensitivity of r, (tf) to position variations.
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Fig. H-i. Sensitivity of r, (tf) to velocity variations.
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Fig. H-j. Sensitivity of v, (tf) to position variations.
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Fig. H-k. Sensitivity of v, (t) to velocity variations.
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Fig. H-l. Sensitivity of vy (tf) to position variations.
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Fig. H-m. Sensitivity of vg (t) to velocity variations.
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Fig. H-n. Sensitivity of v, () to position variations.
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Fig. H-o. Sensitivity of v, (t) to velocity variations.
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Fig. H-p. Sensitivity of r (tf) to mass variation for optimal thrust program.
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Fig. H-q. Sensitivity of v (t) to mass variation for optimal thrust program.
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Fig. H-r. Sensitivity of m(tf) to mass variations for optimal acceleration program.
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